![]() |
Re: Primzahlen bis ins Unendliche
Hm,
Zitat:
Denn wichtig ist bei solchen Sachen immer die möglichst genaue Wortwahl. Und im obigen quote fehlt die entscheidende Aussage das das Produkt alelr bisher bekannten Primzahlen +1 zwangsläufig eine unbekannte Primzahl als teiler enthalten muß die größer als alle bekannten Primzahlen sein muß. Das ist wichtig denn nur so können wie die "Unendlichkeit" der Primzahlen beweisen. Denn wenn wir nun wiederum diese nun bekannte größte Primzahl benutzen und ein neues Produkt aller bekannten Primzahlen +1 erzeugen dann muß diese Zahl wiederum einen Teiler enthalten der größer als die größte bekannte Primzahl ist. Und wenn wir nun wiederum diese nun bekannte größte Primzahl benutzen und ein neues Produkt aller bekannten Primzahlen +1 erzeugen dann muß diese Zahl wiederum einen Teiler enthalten der größer als die größte bekannte Primzahl ist. Und wenn wir nun wiederum diese nun bekannte größte Primzahl benutzen und ein neues Produkt aller bekannten Primzahlen +1 erzeugen dann muß diese Zahl wiederum einen Teiler enthalten der größer als die größte bekannte Primzahl ist. Und wenn wir nun wiederum diese nun bekannte größte Primzahl benutzen und ein neues Produkt aller bekannten Primzahlen +1 erzeugen dann muß diese Zahl wiederum einen Teiler enthalten der größer als die größte bekannte Primzahl ist... Naja macht ihr damit weiter :) Auf alle Fälle ist jedes Wort wichtig ! Zitat:
Ein Axiom mag zwar vielen Leuten als Begründung für igrendwas ausreichen (immerhin 90% der Menschen glauben an einen Gott), aber mir reicht dies nicht. Alle obigen Fragen von mir stellen defakto die Begründung für das Primzahlaxiom ansich dar. Wird dieses Axiom gekippt kann die Mathemtik von vorne anfangen. Zb. Faktorzerlegung: Normalerweise ist die Aussage das eine Primzahl das Produkt aus sich selber und der Einheit ist nicht wörtlich korrekt. Richtiger wäre die Aussage Eine Primzahl hat eine Faktorenzerlegung in Primzahlpotenzen die nur aus sich Selber zum Exponenten der Einheit besteht. Also 5 = 5^1. Damit erklärt sich Gausi's Behauptung das 5 = 5 ist und nicht 5*1. Allerdings ist dies eben nicht richtig weil 5 = 5^1 ist. Und diese 5^1 als formale Darstellung 5*1 ist. Im Umkehrschluß ergibt sich daraus das die Faktorenerlegung einer zusammengesetzten Zahl sich aus reinen Primzahlpotenzen zusamensetzt. Wichtig dabei ist zu begreifen das die Einheit selber nur als Exponent vorkommen kann nicht also Multiplikant bzw. Basis, solange man es nicht formal umschreibt. 18 = 2^1 * 3^2. Die -1 und alle negativen Zahlen werden durch diese Exponentialdarstellung von vornherein ausgeschlossen. D.h. die Sichtweise der Faktorenzerlegung als einfach Produktkette von Primzahlen ist einer "Ver-unschärtfung" des eigentlichen Primzahlaxiom die es dann zulässt das man mit -1 und negativen Primzahlen rechnen könnte. Mir geht es hier also nur um klare und korrekte Aussagen, um eben einem Halbwissen vorzubeugen. Also wenn eine Primzahl eine Zahl ist deren Faktorenzerlegung, also die Zerlegung in ein Produkt aus Primzahlpotenzen, nur aus der Potenz zu sich Selber zur Einheit besteht, so sind zusammengesetzte Zahlen Zahlen die sich aus einem eindeutigen Produkt aus mehreren Primzahlpotenzen zusammensetzen. Dies schließt negative Exponenten wie die -1 von vornherein aus und negative Primzahlen indirekt ebenfalls. Denn gäbe es negative Primzahlen so könnten diese ebenfalls in den Exponenten der Potenzen einer Faktorzerlegung erscheinen, sowas hier x = 2^-3 * 3^-5 usw. und würde somit das Axiom wiederrum in Frage stellen. Das Axiom der Primzahlen kann also nur für IN definiert sein und ist auch nur dort überhaupt von Interesse. Gruß Hagen |
Re: Primzahlen bis ins Unendliche
Zitat:
Die letzten beiden Beiträge muss ich irgendwie übersehen haben. Sorry. Da hätte ich mir das wirklich sparen können. |
Re: Primzahlen bis ins Unendliche
@Hagen: Sag mal bitte, auf welchem Niveau du argumentierst. Ist das nun Stammtisch-Mathematik, was du betreibst, hast du fundierte Mathekenntnisse aus der Schule oder vielleicht gar studiert?
Du fängst hier an, gegen Halbwissen zu wettern, bist aber auf der anderen Seite der Meinung, dass dir ein Axiom als Begründung nicht ausreicht. Das hat nichts mit Glauben zu tun, sondern mit einer allgemeinen Vereinbarung, die sich als sinnvoll herausgestellt hat. Ob aber nun 1 eine Primzahl ist oder nicht, dass hat nichts mit Axiomen zu tun, sondern ist Definitionssache. Genauso wie es Definitionssache ist, ob man 0 als natürliche Zahl ansieht oder nicht. Bei einigen Anwendungen ist es sinnvoll, die 0 zuzulassen, bei anderen nicht. Ein Axiom der reellen Zahlen ist z.B. dass jede nicht-leere nach oben beschränkte Teilmenge von IR eine kleinste obere Schranke besitzt (in einigen Lehrbüchern kommt das auch als Satz. Man kann aber zeigen, dass dies mit dem Archimedischen Axiom und Vollständigkeitsaxiom äquivalent ist, so dass man diesen Satz anstelle der beiden anderen ebensogut als Axiom verwenden kann.) Es gab mal (gibt?) ein "Experiment", wo jemand eine "neue Mathematik" aufgebaut hat, indem er dieses Axiom nicht anerkannt hat. Kann man machen. Es hat sich aber gezeigt, dass die Mathe-Welt mit diesem Axiom die Wirklichkeit besser beschreibt. (afaik hat das auch was mit den Konstruktivisten zu tun, bin mir aber da nicht ganz sicher.) Das mit der eindeutigen Primfaktorzerlegung: Ich weiß nicht, wo du das aufgeschnappt hast, und wieso du jetzt auf so Kleinkram rumreitest. Ich hoffe, dir ist klar, dass das, was man in der Schule als eindeutige Primfaktorzerlegung kennenlernt, ein Spezialfall des Hauptsatzes der Arithmetik ist, der allgemein auf Hauptidealringen gilt. Um die Eindeutigkeit zu erreichen, muss man dabei die einzelnen primen Elemente (die "Primzahlen") in Äquivalenzklassen einteilen. Die Eindeutigkeit bezieht sich dann auf diese Äquivalenzklassen (z.B. wäre 5 und -5 in einer Äquivalenzklasse), nicht auf die einzelnen primen Elemente. Der Satz, dass es eine eindeutige Primzahlzerlegung gibt, beschränkt sich dabei künstlich auf die natürlichen Zahlen, um die Schüler nicht unnötig zu verwirren. Es ist richtig, dass man im allgemeinen positive Zahlen meint, wenn man von Primzahlen spricht. Zahlentheoretisch gesehen ist das aber unnötig oder sogar fatal, weil die natürlichen Zahlen noch nichtmal ein Gruppe bilden (das ist das, was ich mit "nichts vernünftiges" oben meinte). Was ich jetzt nicht noch verstanden habe ist, was das Primzahlaxiom ist... Natürlich muss man in der Mathematik exakt sein und klar formulieren. Aber die Argumentation zum Beweis, dass es unendlich viele Primzahlen gibt, ist absolut korrekt - einen logischen Fehler kann ich darin nicht erkennen. Man nimmt an, dass es endlich viele Primzahlen gibt, multipliziert alle auf und addiert dann 1. Das Ergebnis ist dann durch keine der Primzahlen teilbar (wir haben ja angenommen, das es nur diese endlich vielen gibt). Folglich wäre diese neue Riesenzahl auch eine Primzahl, was im Widerspruch zu der Annahme steht, dass wir alle Primzahlen bereits gefunden haben. Folglich ist die Annahme falsch, womit bewiesen wäre, dass es unendlich viele gibt. Das ist ein absolut wasserdichter Widerspruchsbeweis. Ich möchte mich übrigens korrigieren: Was ich oben als prim bezeichnet habe, ist die Definition für irreduzibel. Ein Element a heißt prim wenn: a|b*c => (a|b v a|c). Aus der Primeigenschaft folgt aber das, was ich oben fälschlicherweise als prim bezeichnet habe. |
Re: Primzahlen bis ins Unendliche
Zitat:
Zitat:
Nun zum akademischem Hintergrund. Nein ich habe Mathematik nicht studiert und das tut auch nichts zur Sache. Oder meinst du das nur ein Mensch mit akademischen Titel das Recht hätte über solche Themen zu diskutieren ? Ich kann aber einige mathematische Kenntnisse auch im praktischen vorweisen, also rede nicht nur von der Theorie sondern auch Praxis. Siehe dazu mein DECMath das besonders zahlentheoretische Aspekte praktisch umsetzt. DECMath kannst du dir hier ![]() Zitat:
Schau mal: mir geht es darum das wenn man ein Axiom verstanden hat, also nicht nur einfach hinnimmt, sich daraus automatisch bestimmte Erkenntisse ableiten. Diese neuen Erkentisse beantworten dann auch andere Fragen. Wir gehen also im Grunde den umgekehrten Weg wie diejenigen Mathmatiker die diese Axiome postuliert haben. Diese Leute hatten es weit schwieriger da sie ja aus den theoretisch/praktischen Erfordernissen einer funktionsfähigen Mathematik erstmal diese Axiome aufstellen mussten. Nun das was uns interessiert sind diese Gründe. Zitat:
Gruß Hagen PS: Kann es sein das du ein gläubiger Mensch bist ? Christ ? |
Re: Primzahlen bis ins Unendliche
![]() Kann man mit Delphi überhaupt mit so grossen Zahlen Rechnen mit 1*10^10Mio ? |
Re: Primzahlen bis ins Unendliche
@Gecko
Zitat:
- NX von Marcewl Martin - FGint - Miracel, GMP usw. für C/C++ Gruß Hagen |
Re: Primzahlen bis ins Unendliche
mfg. Tubos
Ich schreibe dass nur als Info für eine Aussage die von Tubos in der 1-ten Seite gemacht wurde, kann sein dass ihr dieses schon geklärt habt, lege auch eine url rein, Die Annahme, es gäbe nur endlich viele Primzahlen, ....., ![]() Gruss, xtreme |
Re: Primzahlen bis ins Unendliche
Öhm, dieses Thema ist schon ein halbes Jahr alt :wink:
Aber erstmal: Wilkommen in der DP, bubu_xtreme_xtra |
Alle Zeitangaben in WEZ +1. Es ist jetzt 00:26 Uhr. |
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz