![]() |
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
Zitat:
Wie kommt der Empfänger an den Schlüssel? |
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
Zitat:
|
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
Nun sei doch nicht gleich eingeschnappt, bloß weil sich einer in der Tonwahl vergriffen hat.
Reicht euch die Hand, gebt euch ein Küsschen und dann rauchen wir alle 'ne Runde Wasserpfeife, ja? |
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
Zitat:
Ich möchte sagen, das das abgeben von Kommentaren solange ok ist wie sie Sinnvoll sind. Selbst wenn der Kommentar falsche Informationen beinhaltet, hat der Author dennoch das Recht ihn zu schreiben, und sich gegebenfalls auch eines besseren Belehren zu lassen. Aber...es muss dennoch nicht zu jedem Thema ein Kommentar abgegeben werden( Wenn sie nicht direkt eine Antwort sind )! |
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
Zitat:
@Ihr anderen: Bitte macht solche "Streitereien" per PN aus, in den Thread gehören sie nicht ;) |
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
Zitat:
c = sum(||)i[1..j] (p div 2^((i-1) * ln2(k)) mod 2^(i * ln2(k))) xor k; c der Ciphertext ist die Summe der Contenationen der sequientiell XOR verknüpften PlainText p Nachrichtenteile mit dem Schlüssel k. Angenommen: - Schlüssel k ist echt zufällig gewählt - Schlüssel k ist 1/6'tel der Länge der Plaintext Nachricht - Plaintext Nachricht p ist auch zufällig gewählt - die Verschlüsselungsoperation ist XOR dann wirst du es nicht knacken können. Entgegen der Aussage "grundsätzlich sei gesagt, dass das Knacken von Codes immer möglich ist" ist sowas tatsächlich niemals zu knacken. Diese Aussage ist schlichtweg falsch. Für jedes der 1/6 langen Plaintext Segmente gilt: Jedes Plaintext-Nachrichten-Segment mit Länge Ln2(k) ist gleichwahrscheinlich wie jedes andere mögliche Plaintext-Segment, da sie per reinem Zufall erzeugt wurden. Diese Segmente werden mit einem Schlüssel K verknüpft der ebenfalls zufällig ist. D.h. jeder mögliche Schlüssel K ist gleichwahrscheinlich zu jedem anderen Schlüssel K. Da wir nun binär XOR verknüpfen, und diese Operation eine absolut symmetrische ist, d.h. die Bit-Änderungs-Wahrscheinlichkeit relativ gesehen zu den beiden nötigen Inputbits ist exakt 50%, und die beiden Eingangsbits sind selber mit einer Wahrscheinlichkeit von 50% entweder 0 oder 1, hast du immer noch eine perfekte OTP Verschlüsselung vor dir liegen. Auch wenn die Zufallsnachricht in 6 Teile geteilt wird und jeder dieser Teile mit dem gleichen Schlüssel verschlüsselt wurden. In diesem Szenmario ist es defakto so das sich die Bedeutungen der zufälligen Nachricht zum zufälligen mehrfachverwendeten Schlüssel austauschen. D.h. der eigentliche OTP Schlüssel ist die Nachricht die sich niemals wiederholt und die egentliche Nachricht, die eben Redundanzen enthält, ist der mehrfach verwendete Schlüssel. Das diese Austauschung der Bedeutungen überhaupt möglich ist liegt an der Verwendung der ideal symmetrischen XOR Operation. Der Kryptologe hat also keinerlei Chance aus diesem Konstrukt heraus irgendwelche relevanten Informationen zu ziehen. Die verwendete XOR Operation ist ideal. Der Schlüssel ist per echtem Zufall gewählt und somit ebenfalls ideal. Die Nachricht ist per echtem Zufall gewählt und somit ebenfalls ideal. Sowas geht nicht zu knacken. Allerdings, sollte nur eine der obigen Bedingung verändert werden so würde diese ganze Argumentationskette kippen. Also, Nachricht ist zb. nicht echt zufällig, sondern deutscher Text und der Kryptologe hat die Information das es deutscher Text ist. Dann ist die gewählte Verschlüsselung unsicher weil der gleiche Schlüssel 6 mal auf verschiedenen Teilnachrichten mit annähernd bekanntem Inhalt angewendet wurde. Je häufiger nun dieser Schlüssel wiederverwendet wird um so mehr steigt die Wahrscheinlichkeit proportional zur Schlüssellänge das man den Ciphertext knacken kann. In deiner Aufgabenstellung geht es darum zu begründen warum eine ideale OTP Verschlüsselung eben den Schlüssel nur EINMALIG benutzen darf um sicher zu sein. Diese Bedingung der OTP's gilt aber nur solange wie die Nachricht selber KEIN echter Zufall ist da ansonsten sich die Bedeutungen von Schlüssel und Nachricht austauschen. Gruß Hagen |
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
So, ich gehe jetzt mal davon aus das die Nachricht NICHT zufällig ist.
Desweiteren hast du das Program zur Hand das diese Daten verschlüsselt. Desweiteren kannst DU dem Program gesteuert mitteilen WELCHE Daten er verschlüsseln soll. Dann ist die Sache schon so easy zu knacken das es lächerlich wird. Du gibst dem Program eine Datei aus lauter NULLEN und läst sie verschlüsseln. Danach wirst du sehen das sich der binäre Inhalt dieser verschl. Datei exakt 6mal wiederholt. Und kaum zu gauben, 1/6'tel von dieser Datei IST der Schlüssel, sofort lesbar. Dieser sehr praktikable Angriff beruht dann auf der "Known Plaintext Attack" und der "Reply Attack". Gruß Hagen |
Re: XOR-Verschlüsselte Binär-Datei - Knacken möglich?
Anders Szenario:
Du hast das Program. Du hast die verschlüsselte Datei. Du kannst im Program die entschlüsselten Daten abfangen. Nun nimmst du die verschlüsselte Datei -> c der CipherText und XOR verknüpfst diese mit dem Plaintext p die entschlüsselte Datei. Im Resultat dieser XOR Operation findest du lesbar in jedem 1/6'tel den benutzten Schlüssel. Im vereinfachten Sinne nennt man sowas "differientielle Kryptoanalyse". Gruß Hagen |
Alle Zeitangaben in WEZ +1. Es ist jetzt 06:26 Uhr. |
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz