AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Kreisförmige Bewegung eines Objektes

Ein Thema von ErdNussLocke · begonnen am 12. Sep 2006 · letzter Beitrag vom 13. Sep 2006
Antwort Antwort
TStringlist

Registriert seit: 1. Dez 2003
360 Beiträge
 
Turbo Delphi für Win32
 
#1

Re: Kreisförmige Bewegung eines Objektes

  Alt 13. Sep 2006, 15:46
Hier nochmal ein ganz trivialer Erklärungsversuch: Du kennst doch bestimmt die Sache mit dem Einheitskreis und dem rechtwinkligen Dreieck darin. Die Hypotenuse dieses Dreieckes ist dabei nämlich immer der Kreis-Radius, der, wenn der Winkeln zur X-Achse langsam aber stetig zunimmt, dann natürlich auch jeden Punkt auf dieser Kreisbahn berühren kann. Und um nun rechnerisch zu diesen Punkten auf der Kreisbahn zu kommen, brauchst man jetzt nur noch mehr zu einer Ausgangsposition diejenigen Längen dazuaddieren, die dieser Radius (=Hypotenuse) jeweils auf die X- u. auf die Y-Achse projiziert ergibt. Und genau diese Projektionslängen sind nunmal die Ergebnisse dieser Sinus- und Kosinus-Funktionen... (Wie die jetzt mathematisch genau definiert sind, wird ja schon teilweise darüber beschrieben)


edit: Die obige Erklärung gilt, wenn die dort erwähnte Ausgangsposition (X0/Y0) immer der Kreismittelpunkt ist ...und daher musste das X0 vor dem eigentlichen Start des Timers dann eben auch immer zuerst noch auf diesen Kreismittelpunkt umgesetzt werden muss (X0 := Label1.left - 40)! ~~~ nur der absoluten Nachvollziehbarkeit halber ~~~
MfG (& Thx ggf.)
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 08:18 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz