AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Sonstige Fragen zu Delphi Delphi RSA: Privaten Schlüssel schneller berechnen
Thema durchsuchen
Ansicht
Themen-Optionen

RSA: Privaten Schlüssel schneller berechnen

Ein Thema von WIN-MANww · begonnen am 1. Jun 2006 · letzter Beitrag vom 17. Sep 2012
Antwort Antwort
Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#1

Re: RSA: Privaten Schlüssel schneller berechnen

  Alt 2. Jun 2006, 00:41
Zitat:
aus E^-1? Aber E^-1 ist ja meist keine natürliche Zahl.
Falsch bzw. richtig

Also nochmal

1 = D * E mod Phi(N) -> D = E^-1 mod Phi(N).

Wir arbeiten hier immer in Modularen Ringen und somit sind alle Resultate ganze Zahlen. Da das Modul Phi(N) und N positive Zahlen sind könnte man das sogar einschränken auf die natürlichen Zahlen, sprich ganze positive Zahlen.

Das was dich nun stört ist die separate Betrachtung von E^-1. Als einfache Operation betrachtet ist es richtig was du sagst, eine reelle Zahl. Aber wir arbeiten ja modular mod Phi(N) und somit muß D = E^-1 mod Phi(N) dann ebenfalls eine postive ganze Zahl zwischen 0 und Phi(N) -1.

Die Inversion einer Zahl in einem Modularen Ring ist dabei aber nur unter bestimmten Umständen definiert. Wenn das Modul N oder Phi(N) teilerfremd zu E ist so können wir definitiv das modulare multiplikative Inverse berechnen.

Mit Hilfe des erweiteren ggT() können wir nun direkt aus E,Phi(N) dessen inverses E^-1 berechnen und dies alles im Zahlenbereich der ganzen Zahlen.

Gruß Hagen
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 21:49 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz