AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Programmieren allgemein Weiterführung vom "Thread Fermats Vermutung"
Thema durchsuchen
Ansicht
Themen-Optionen

Weiterführung vom "Thread Fermats Vermutung"

Ein Thema von dizzy · begonnen am 22. Apr 2006 · letzter Beitrag vom 21. Mai 2006
 
Benutzerbild von dizzy
dizzy

Registriert seit: 26. Nov 2003
Ort: Lünen
1.932 Beiträge
 
Delphi 7 Enterprise
 
#30

Re: Weiterführung vom "Thread Fermats Vermutung"

  Alt 28. Apr 2006, 02:36
Zitat von negaH:
Deine Vorgehensweise geht von einer ganz spezifischen Festlegung für rationale Zahlen aus. Wir können das mal spaßenshalber auf die natürlichen Zahlen übertragen.
Das haut nicht hin, da die natürlichen Zahlen als solche die herangezogene Definition nicht als Wesensgrundlage haben. Allein die Definition reeller Zahlen (und ihrer übergeordneten ((mehrfach) komplexwertigen) Systeme) ermöglicht diese Form der Beweisführung. Natürliche Zahlen sind restriktiver definiert, nämlich diskret, und nicht kontinuierlich (was die betreffende Eigenschaft/Definition aussagen soll).

Zitat von negaH:
Weil die Definition der reellen Zahlen eben nur als eine Defintion für reelle Zahlen gültig ist.
Und zu welchem System zählst du 0.9p? Oder 0.3p? Ich kann die Richtigkeit der komplexen Multiplikation auch nicht im reellen Zahlenraum beweisen
(Okay, als 0.9p==1 wäre sie ebenfalls Element der natürlichen Zahlen, das ist korrekt. Allerdings gälte es dann zu beweisen, dass 1==1, was wiederum noch einleuchtender ist.)

Zitat von negaH:
Ich möchte wissen ob 0.9p == 1 für alle Zahlendarstellungen gültig ist, quasi absolut und exakt gesehen, OHNE irgendwelche Randbedingungen die die Zahlen einschränken. Und da vertrete ich eben die Meinung das nur 1 / 9 == 0.1p und 0.1p * 9 == 1 sein kann und nicht 0.1p * 9 == 0.9p == 1.
Das heisst, dass 0.9p bei dir nicht durch 9*0.1p erreicht werden kann. Schreiben wir als Bruch: 9/9 ist nicht aus 9*(1/9) berechenbar?
Wie ist das bei 0.3p? 0.3p*2 ist bei dir dann nicht 0.6p, also 2*(1/3) <> (2/3)? Weil 0.3p*3 dürfte dann ja nicht 0.9p sein, sondern wäre ==1, was nach deine Definition einen Unterschied ausmacht. Woher kommt dieser dann? Ein Fehler in der Definition der Multiplikation?

Zitat von negaH:
Ich kann sehr wohl all die guten Argumente von euch verstehen und nachvollziehen, besonders das eine 0.0 unendlich 0 und 1 niemals diese letzte 1 erreichen kann. Aber auch wenn die 1 niemals geschrieben wird so existiert diese 1 aber denoch an unendlicher Stelle. Dh. wertmäßig bewegt sich diese 0.0 unendlich 0 und 1 an unendlicher Stelle eben dieser Ziffer 1 entgegen und somit ist diese Zahl ungleich 0.
Naja, die 1 wird ja nicht nur nie geschrieben. Sie wird von den Nullen unendlich lang nach hinten gedrängt, und in der Unendlichkeit leistet sie keinen Beitrag mehr zum Wert. Wenn ich verspreche, dir in unendlich vielen Jahren 1mio Euro zu schenken, so würde deine Freude darüber auch identisch Null sein. Ebenso dein Reichtumszuwachs
Zumal diese 1 an der selben Stelle auftauchen müsste, an der die letzte 9 der Periode steht. Sie HAT aber keine letzte Neun! Also kann diese 1 nicht existieren.

Zitat von negaH:
Aber noch warte ich auf die Antworten meiner Mathematikfreunde.
Ich bin echt gespannt! Nicht dass da noch einer mit etwas hier noch nie bedachtem aufkommt, und alles übern Haufen wirft Weil dann würd ich glaub ich langsam anfangen an den Grundfesten der Mathematik zu zweifeln.


Gude Nacht geliebte DP!
Fabian
Fabian K.
INSERT INTO HandVonFreundin SELECT * FROM Himmel
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 11:59 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz