AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Programmieren allgemein Weiterführung vom "Thread Fermats Vermutung"
Thema durchsuchen
Ansicht
Themen-Optionen

Weiterführung vom "Thread Fermats Vermutung"

Ein Thema von dizzy · begonnen am 22. Apr 2006 · letzter Beitrag vom 21. Mai 2006
Antwort Antwort
Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#1

Re: Weiterführung vom "Thread Fermats Vermutung"

  Alt 26. Apr 2006, 10:38
@JasoDX:

Zitat:
Man nenne mir eine rationale Zahl x, dargestellt in einem Bruch, fuer die gilt: 0.9p < x < 1
Deine Vorgehensweise geht von einer ganz spezifischen Festlegung für rationale Zahlen aus. Wir können das mal spaßenshalber auf die natürlichen Zahlen übertragen.

Dann hiese dies: zwei natürliche Zahlen sind gleich wenn zwischen diesen beiden Zahlen keine weitere Zahl vorkommt. Also 1 == 2 weil zwischen 1 und 2 keine weitere Zahl vorkommt. Gut wir sehen das ist falsch, warum ? Weil die Definition der reellen Zahlen eben nur als eine Defintion für reelle Zahlen gültig ist.

So: aus Sicht dieser Definition gibt es tatsächlich keine Zahl zwischen 0.9p und 1, und ergo sind die Zahlen 0.9p und 1 als reelle Zahlen tatsächlich gleich.

Aber worum es mir in meinen ganzen Diskussionen geht ist nicht zu beweisen das 0.9p == 1 in den reellen Zahlen gültig ist sondern auch zb. in den komplexen Zahlen oder sonstwelchen anderen.

Ich möchte wissen ob 0.9p == 1 für alle Zahlendarstellungen gültig ist, quasi absolut und exakt gesehen, OHNE irgendwelche Randbedingungen die die Zahlen einschränken. Und da vertrete ich eben die Meinung das nur 1 / 9 == 0.1p und 0.1p * 9 == 1 sein kann und nicht 0.1p * 9 == 0.9p == 1.

Ich kann sehr wohl all die guten Argumente von euch verstehen und nachvollziehen, besonders das eine 0.0 unendlich 0 und 1 niemals diese letzte 1 erreichen kann. Aber auch wenn die 1 niemals geschrieben wird so existiert diese 1 aber denoch an unendlicher Stelle. Dh. wertmäßig bewegt sich diese 0.0 unendlich 0 und 1 an unendlicher Stelle eben dieser Ziffer 1 entgegen und somit ist diese Zahl ungleich 0. Ich sträube mich das zu leugnen. Aber noch warte ich auf die Antworten meiner Mathematikfreunde.

Gruß Hagen
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 09:19 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz