Einzelnen Beitrag anzeigen

Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#30

Re: 2 Integerwerte in einem Integerwert reversibel speichern

  Alt 11. Aug 2007, 21:16
Hm warum sollte das falsch sein ?

Es gibt in einem begrenzten Zahlenbereich immer mehr zusammengesetzte Zahlen als Primzahlen. (mal abgeshen vom Bereich 2 bis 5 oä.).
Das bedeutet das wenn man die Zahlen in diesem Beeich per Primzahlen kodieren wollte so reichen die Primzahlen innerhalb dieses Breiches dafür nicht aus.

Nun definieren wir diesen Bereich als unendlich groß, also benötigen wir mehr als unendlich viele Primzahlen. Es stimmt schon, unendlich bedeutet unendlich. Das heist aber nicht das wenn man die Menge von Zahlen betrachtet im Verhältnis zu einer unendlichen Menge von Zahlen wir denoch mehr als unendlich viele Primzahlen benötigen. Wir definieren also die Menge A aller Zahlen und versuchen diese Zahlen in die Menge B von Primzahlen zu mappen. Wenn Menge A eine Kardinalität von unendlich besitzt so muß Menge B ebenfalls unendlich sein, dann existiert aber denoch keine Schnittmenge C aus A und B die gleich groß unendlich wäre. Da dann die Menge der Primzahlen B in der Menge aller Zahlen A vollständig aufgeht. Menge A die unendlich groß wäre ist denoch größer als Menge B die ebenfalls unendlich groß wäre und Menge B ist nur eine Teilmenge von A. Wir wollen aber alle Zahlen der Menge A kodieren und dazu reicht die Anzahl der Primzahlen (Menge B) die in Menge A enthalten sind nicht aus. Also selbst wenn Menge A unendlich groß wäre so benötigten wir eine Menge B von primzahlen mit gleicher Größe wie Menge A.

Hm, schwer zu erklären

Nochmal

Menge A, alle ganzen Zahlen inklusive Primzahlen
Menge C, alle Primzahlen aus Menge A
Menge B, nur Primzahlen

Menge A und B müssen gleiche Kardinalität besitzen, also exakt gleiche Anzahl von Zahlen
Menge C wird immer weitaus kleiner sein als Menge A, logisch gibt es doch weniger Primzahlen als zusammengesetzte Zahlen

Ergo die Menge C wird immer kleiner Menge B sein.
Wenn Menge A unendlich groß ist dann wird Menge C auch unendlich groß sein aber denoch kleiner als Menge A
Wenn Menge B exakt gleich groß Menge A sein muß aber Menge C immer kleiner als Menge A ist dann heist dies,

das größte Element=Zahl aus Menge A ist Zahl unendlich und das größte Element in Menge C ist größer unendlich.

Wir rechnen eben nicht mehr mit Zahlen sondern mit Mengen deren Elemente Zahlen sind.

Jetzt ist die Frage, gibt es eine Zahl die großer ist als unendlich groß ?
Und gibt es eine Menge A die unendlich viele Zahlen enthält die aber denoch kleiner sein kann als eine andere Menge B mit unendlich vielen Zahlen.


Gruß Hagen
  Mit Zitat antworten Zitat