Zitat:
Nein. Er meinte, das die 12. und die 20. Primzahl miteinander multipliziert werden. Dann ist es selbstverständlich eindeutig (natürlich nicht bezüglich p*q=q*p). Allerdings werden die Zahlen sehr schnell sehr groß.
Ok, macht aber noch weniger Sinn. Es gibt weniger Primzahlen als Nichtprimzahlen, logisch. Das bedeutet gäbe es unendlich viele Nichtprimzahlen dann benötigen wir mehr als unendlich viele Primzahlen. Soweit die methematrische Unmöglichkeit des Vorschlages.
Technisch gesehen betrachten wir ja nur Zahlen im Bereich von Integer etc.pp. Dann entsteht aber das problem diese beiden Zahlen wieder zu extrahieren, das ist eine sehr aufwendige Operation. Hat aber Manuel im vorherigen Posting korrekt erklärt.
Es gibt Zahlensysteme die modulare Merhfachringe zu den kleinen Primzahlen benutzen, siehe D.J.Bernstein. Deren "Packungsdichte" entspricht den natürlichen Zahlen und man kann jede Ganzzahl damit eineindeutig darstellen. Allerdings benutzt man solche Ringe nur deswegen um sehr große Ganzzahlen > 1024 Bit in ein Zahlensystem zu überführen -> modulare multiple Ringe zu Primzahlen, um alle Berechnungen mit solchen großen Zahlen zb. auf 32 Bit Ebene durchführen zu können. Man benutzt also das Zahlendarstelung zb. alle Reste der modularen Division der kodierten Zahl zu den kleinen Primzahlen bis < 2^32. Die maximal so kodierbare Zahl wäre dann exakt so groß wie das Primzahlprodukt aller Primzahlen < 2^32 -1. Der benötigte Speicherverbrauch wäre dann die Anzahl aller Primzahlen kleiner 2^32 -> P(2^32-1) * 4 Bytes. Jede mathematische Operation wie Addition/Subtraktion usw. würde nun dieses Array[] von Modularen Resten zu Primzahlen addieren per 32 Bit Operationen und somit entsteht kein Überlauf/Unterlauf mehr innerhalb dieser Ringe. Die Umrechnung dieser Zahlendarstellung wieder zurück in natürliche Zahlen erfolgt mit Garner's Version des Chinisischem Restsatzes.
Gruß Hagen