AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Primzahlen bis ins Unendliche

Ein Thema von Tomislav · begonnen am 24. Dez 2005 · letzter Beitrag vom 19. Okt 2007
 
Der_Unwissende

Registriert seit: 13. Dez 2003
Ort: Berlin
1.756 Beiträge
 
#11

Re: Primzahlen bis ins Unendliche

  Alt 24. Dez 2005, 09:58
Zitat von Luckie:
@SirThornberry:
Das stellt kein Hindernis da. Man kann sich auch einen Datentyp deklarieren, der keinerlei Begrenzungen hat, was die Größe angeht. Es gibt sogar schon Delphi Bibliotheken, die dies tun.
Hi,
ich glaube du kannst trotzdem nicht beliebig groß werden, der Speicher ist im Moment doch sehr endlich und damit dürfte irgendwann Schluß sein (und da es keinen Beweis für eine größte Primzahl gibt könnte es heißen dass der Speicher nicht reicht).
Dürfte an sich aber wirklich keine Aufgabe für irgendeinen einzelnen Rechner sein, hat zufällig jemand im Kopf wie viel Stellen die im Moment größte Primzahl hatte? Und die großen werden schon nach den aktuell schnellsten bekannten Algorithmen in Clustern berechnet, die dann doch ein paar GFlops mehr haben dürften als ein normaler PC.

Also sollte der erste Schritt (Luckie hat es implizit schon gesagt) sein, einen Algorithmus zu entwerfen, der mit deutlich geringerer Rechenzeit auskommt (am besten O(1) mit einem geringen konst. Faktor).

Gruß Der Unwissende
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 22:15 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz