AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Object-Pascal / Delphi-Language Delphi Potenzieren mit sehr großen Zahlen ohne modulus?????
Thema durchsuchen
Ansicht
Themen-Optionen

Potenzieren mit sehr großen Zahlen ohne modulus?????

Ein Thema von Dr.Hackstable · begonnen am 2. Dez 2005 · letzter Beitrag vom 3. Dez 2005
Antwort Antwort
Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#1

Re: Potenzieren mit sehr großen Zahlen ohne modulus?????

  Alt 3. Dez 2005, 14:05
Sag das doch gleich.

Deine Formel Ce^x * Cf^y = (m^e)^x*(m^f)^y = m^(e*x+y*f) = m^1 = m ist unvollständig !
Wir arbeiten beim RSA immer in einem modularem Ring zu N, ergo richtig ist

Ce^x * Cf^y == m mod N

m = Ce^x * Cf^y mod N
m = (ce^x mod N * Cf^y mod N) mod N

Kopiere nachfolgenden Source in TestUnit.pas und registriere mit RegisterProc('\RSA\Test', '', Test, vk_F8) diese Procedure. Dann startest du Test.exe und drückst F8. Fertig.

Dieser Angriff kann also nur funktionieren weil beide Parteien das gleiche N benutzen und die Message M NICHT mit Zufallsdaten expandiert haben. Es ist also WICHTIG beim RSA die Nachricht M vor der Verschlüsselung immer mit Zufall zu expandieren ! Besonders bei digitalen Signaturen ist dies wichtig.

Gruß Hagen

Delphi-Quellcode:
procedure Test;
const
  KeySize = 256;
  QSize = KeySize div 2;
  PSize = KeySize - QSize;

var
  P,Q,U: IInteger;
  N: IInteger;
  E1,D1,C1: IInteger;
  E2,D2,C2: IInteger;
  M,X,Y: IInteger;
begin
// bilde RSA Domain, P,Q,N
  repeat
    NRnd(P, PSize);
    NBit(P, PSize -2, True);
    NMakePrime(P, [1, 2]);
    repeat
      NRnd(Q, QSize);
      NBit(Q, QSize -2, True);
      NMakePrime(Q, [1, 2]);
    until NCmp(P, Q) <> 0;
    if NCmp(P, Q) < 0 then NSwp(P, Q);
    NMul(N, P, Q);
  until NSize(N) = KeySize;
  WriteLn('N : ', NStr(N));
  
// erzeuge public/private Ver/Entschlüsselung Exponenten
  NDec(P);
  NDec(Q);
  NLCM(U, P, Q);
  repeat
    repeat
      NRnd(E1, NLog2(NSize(N)) * 4);
      NOdd(E1, True);
    until NGCD1(E1, P) and NGCD1(E1, Q);
  until NInvMod(D1, E1, U) and (NSize(D1) >= NSize(E1)) and NGCD1(D1, N);

  repeat
    repeat
      NRnd(E2, NLog2(NSize(N)) * 4);
      NOdd(E2, True);
    until NGCD1(E2, P) and NGCD1(E2, Q) and NGCD1(E1, E2);
  until NInvMod(D2, E2, U) and (NSize(D2) >= NSize(E2)) and NGCD1(D2, N);

  WriteLn('E1 : ', NStr(E1));
  WriteLn('E2 : ', NStr(E2));

  NSet(M, 'unser Geheimnis', 256);

  NPowMod(C1, M, E1, N); // verschlüssele M mit E1
  NPowMod(C2, M, E2, N); // verschlüssele M mit E2

  WriteLn('C1 : ', NStr(C1));
  WriteLn('C2 : ', NStr(C2));

  NGCD(U, X, Y, E1, E2); // erweiterter GCD()

  NPowMod(U, NInt([C1, C2]), NInt([X, Y]), N); // U = C1^X * C2^Y mod N

  WriteLn('M : ', NStr(M, 256));
  WriteLn('M'' : ', NStr(U, 256)); // U = M
  WriteLn;
end;
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 11:48 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz