Einzelnen Beitrag anzeigen

Benutzerbild von JasonDX
JasonDX
(CodeLib-Manager)

Registriert seit: 5. Aug 2004
Ort: München
1.062 Beiträge
 
#77

Re: Weiterführung vom "Thread Fermats Vermutung"

  Alt 26. Apr 2006, 01:07
Ich hab noch einen kleinen Beweis, der zwar nicht so sonderlich mit mathematischen Formeln geschmueckt, aber dafuer umso anschaulicher ist:
Wenn man 2 Zahlen (a und b) vergleicht, so gibt es 3 Moeglichkeiten:
  • a ist kleiner als b
  • a ist gleich b
  • a ist groesser als b
Wir eliminieren mal die letzte Moeglichkeit fuer unser Beispiel, weil wir davon ausgehn, dass die Zahlen sortiert sind.
Wenn wir also die Sortierte Zahlenmenge [a, b] vergleichen, kann a entweder kleiner b oder gleich b sein.
Gucken wir uns den ersten Fall an: Die rationalen Zahlen sind so definiert, dass es bei 2 verschieden grosse Zahlen (z1, z2) immer unendlich viele Zahlen gibt fuer die gilt: z1 < x < z2.
So auch fuer unser Beispiel: es gibt im ersten Fall, naemlich wenn a < b, unendlich viele Zahlen fuer die gilt a < x < b.
Betrachten wir nun die 2. Moeglichkeit, naemlich dass a = b: Dort gibt es genau 0 Zahlen, fuer die gilt a < x < b.
Das bedeutet: Wenn eine Zahl nicht gleich der anderen ist, so gibt es unendlich viele Zahlen dazwischen. Wenn 2 Zahlen gleich sind, so gibt es genau 0 Zahlen dazwischen. Es gilt auch der Umkehrschluss: Wenn es unendlich viele Zahlen zwischen a und b gibt, so ist a <> b. Gibt es keine Zahlen dazwischen, so ist a = b.
Und wo liegt jetzt der Beweis?
Man nenne mir eine rationale Zahl x, dargestellt in einem Bruch, fuer die gilt: 0.9p < x < 1


Das, was uns so durcheinanderbringt, ist IMO die Darstellung. Wenn wir uns die 0.9p nicht als Zahl, sondern als Position am Zahlenstrahl betrachten, wirds vielleicht eindeutiger. Es ist fuer unsere Logik halt nicht so einleuchtend, dass 2 so unterschiedlich dargestellte, eindeutig scheindende Zahlen doch den selben Wert repraesentieren koennen.

greetz
Mike

[Edit] rational, net reell
Mike
Passion is no replacement for reason
  Mit Zitat antworten Zitat