Zitat von
Chakotay1308:
Ist aber falsch...
Die ersten drei Aussagen sind Gesetze.
Gesetze sind eben Axiome. Die Zahlen, von denen wir meistens sprechen, sind reele Zahlen. Man sagt R ist ein Körper. Dieser Körper hat 13 Axiome, genauer: 9 Körper-, 3 Anordnungs- und ein Vollständigkeitsaxiom. Du kannst jetzt Zahlen, wie 1, 2, 3, ... in eine eigene "Klasse" stecken: die natürlichen Zahlen. Dort gelten aber nur einige wenige Axiome, da du z.B. kein inverses Element hast, etc.
Wenn du von beweisen sprichst: ja, man kann beweisen, dass R ein Körper ist. Eben mit diesen Axiomen. Denn sie definieren ja gerade, was ein Körper ist. Naja, aber wir kommen vom Thema ab. Also zurück.
Mein Ansatz mit der geometrischen Reihe ist auf jedenfall richtig. Kann gar nicht anders sein. Wenn wir grad bei Körper sind. Dort gilt das Anordnungsaxiom. Also, ist 0.9p größer 1? Ist es kleiner als 0.9p ? Nein, also muss es genau 1 sein, da R angeordnet ist. Ist also unumgänglich, außer 0.9p wäre irrational oder sogar komplex. Is es aber nich, also is 0.9p = 1.