Einzelnen Beitrag anzeigen

Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#38

Re: Weiterführung vom "Thread Fermats Vermutung"

  Alt 25. Apr 2006, 16:31
Zitat:
Was sagst du denn gegen das Argument, dass man keine Zahl zwischen diesen Zahlen finden kann?
Für dein x kannst du keinen Wert angeben, der wirklich größer als Null ist.
Das stimmt, ICH kann keinen konkreten Wert angeben, kann aber Formal nachweisen das es einen Wert geben muß der als Differenz eben unendlich klein aber nicht Null ist.

1 - 1/unendlich != 1

Das muß Fakt bleiben, da

0 != 1/unendlich


Der Term "unendlich" ist dabei nicht weg zu bekommen, er bleibt als Term immer erhalten. Dabei ist es egal ob man die 1 durch 2 oder jede andere Zahl ersetzt. Nur 1/unendlich - 1/unendlich == 0 kann richtig sein.

1 - 1/unendlich = 0.9p
1 = 0.9p + 1/unendlich

Dividiert man zb. duch 2 so ergibt sich

0.49p = 0.5 - 0.5/unendlich

und es muß wieder 0.000 unendlich 0 und 1 rauskommen. Logisch, wir haben ja nur beide Seiten der Formal, beide Brüche quasi mit 2 dividiert, also rein garnichts Wertmäßig verändert.

Ergo: 1/unendlich dividiert x ist 1/unendlich, oder als Konsequenz dessen

Unendlich * x = Unendlich
Unendlich / x = Unendlich

wenn X != 0.

Führen wir das nun zurück:

1 = 0.9p + x, und X > 0

X muß größer 0 sein weil ansonsten nicht mehr gilt

Unendlich * x = Unenldich
Unendlich / x = Unendlich

und X != 0

Gelte aber X == 0 dann wäre

Unendlich * 0 != Unendlich
Unendlich / 0 != Unenldich <- übrigens nicht definiert !!

als muß es eine Differenz zwischen 1 und 0.9p geben, namlich 1/unendlich > 0.

Gruß Hagen
  Mit Zitat antworten Zitat