Einzelnen Beitrag anzeigen

Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#32

Re: Wie lang dürfen verschachtelte FOR-Schleifen sein?

  Alt 25. Apr 2006, 14:39
Der "Beweis" ist falsch

Code:
0.9p heißt 0.9 Perdiode

0.9p * 10 = 9.9p              <- richtig

9 * 0.9p = (10 - 1) * 0.9p    <- richtig aber was hat
                               <- 9 * 0.9p mit 9.9p zu tuen ? 9.9p == 9.0 + 0.9p nicht 9 * 0.9p

         = 9.9p - 0.9p
9 * 0.9p = 9 
    0.9p = 1
Wie du siehst die Formale Umwandlung 9.9p != 9 * 0.9p == 9 + 0.9p
Aus diesem logischen Fehler heraus ergeben die anderen Ableitungen keinen Sinn mehr und der komplette Beweis muß falsch sein.

Warum sollte

9 * 0.9p == 9.9p - 0.9p sein ? Das ist grober Unsinn.

9 + 0.9p == 9.9p - 0.9p, das ist korrekt !

0.9 periode ist nicht 1.0 nur

0.9 periode + 0.0 periode 1 == 1.0

Selber nachdenken ist die Devise

Es geht dabei NICHT darum das zwischen 0.9p und 1.0 noch einer weitere Zahl liegt, das ist irrelevant, sondern nur wie groß der Abstand zwischen 0.9p und 1.0 ist. Und dieser ist exakt 0.0p1, also 0.0 Periode 0 und abschließende 1.
Das ist der minimalste Abstand zur Null quasi fast Null aber niemals ganz Null. Und wenn es diesen minmalen wertmäßigen Abstand zwischen 1.0 und 0.9p gibt so kann nicht 1.0 == 0.9p sein. Sondern ist immer

1.0 = 0.9p + x wobei x > 0

1.0 - 0.9p == x wobei x > 0

demzufolge

1.0 != 0.9p


Gruß hagen
  Mit Zitat antworten Zitat