Zitat:
Willst du nun Wiles Beweis widerlegen so hast du zwei Möglichketen:
1.) finde einen logischen Fehler in Wiles Beweis.
2.) widerlege nur eins der Axiome der Mathematik auf denen Wiles Beweis aufsetzt.
Du kannst also mit 100% Sicherheit davon ausgehen das du keinen Exponenten finden wirst der als Gegenbeispiel herhalten kann falls du nicht Punkt 1.) oder 2.) machen möchtest.
Du hast doch selbst gesagt, dass man in der Kryptogrphie kein Verfahren als sicher betrachten darf, dessen Wirksamkeit man nicht selbst beweisen kann. Mit einem Semester Ana und La bin ich {fast} sicher nicht in der Lage Wiles zu verstehen und darf somit nicht mit absoluter Sicherheit davon ausgehen, dass er recht hat. Da kein Mathematiker einen Fehler gefunden hat, darf ich den Beweis wahrscheinlich mit p=(1-1/unendlich) als korrekt ansehen, was aber nicht 1 ist. {wobei 1/unendlich etwas schwierig, aber der Gedanke wird sicher klar}
Warum führst du da nicht die Möglichkeit auf, ein Gegenbeispiel zu finden (ob per Überlegung, oder Brute Force)?
Wenn mir jemand einen Satz gibt, der die Existenz von etwas verneint, darf ich den doch durch ein Gegenbeispiel widerlegen. Ist das bei diesem Beweis anders, weil sehr viele Mathematiker davon ausgehen, dass er korrekt ist?
Zitat:
Weil du es mit Sicheheit eben NICHT schnell zeigen kannst. Und das liegt daran das Wiles Beweis mit absoluter Sicherheit das Gegenteil beweist, für alle unendlich vielen Exponenten. Dies trifft natürlich nur dann zu wenn unsere Axiome der Mathematik weiterhin Gültigkeit besitzten. Von diesem Fall kann man aber getrotzt ausgehen.
Welches Problem könnte ich denn haben, für ein Tupel an Parametern die Gleichung zu überprüfen?
Getrost oder getrotzt?
Wie oben gesagt, muss man nicht alles (mit etwas Trotz) als potentiell falsch ansehen?
Vielen Dank schon mal für deine Ausführungen
Erwarte das Beste und bereite dich auf das Schlimmste vor.