Einzelnen Beitrag anzeigen

Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#74

Re: Primzahlen bis ins Unendliche

  Alt 5. Apr 2006, 11:19
Zitat:
Natürlich muss man in der Mathematik exakt sein und klar formulieren. Aber die Argumentation zum Beweis, dass es unendlich viele Primzahlen gibt, ist absolut korrekt - einen logischen Fehler kann ich darin nicht erkennen. Man nimmt an, dass es endlich viele Primzahlen gibt, multipliziert alle auf und addiert dann 1. Das Ergebnis ist dann durch keine der Primzahlen teilbar (wir haben ja angenommen, das es nur diese endlich vielen gibt). Folglich wäre diese neue Riesenzahl auch eine Primzahl, was im Widerspruch zu der Annahme steht, dass wir alle Primzahlen bereits gefunden haben. Folglich ist die Annahme falsch, womit bewiesen wäre, dass es unendlich viele gibt.
Das ist ein absolut wasserdichter Widerspruchsbeweis.
Dem stimme ich ja auch voll und ganz zu. Nur lese dir mal die vorherigen Postings ganz genau durch und du wirst sehen das man versucht hat auf Grund dieses Beweises eine "Formel" zur Erzeugung von Primzahlen zu erzeugen. Und ich habe nun versucht durch eine wörtliche Uminterpretation bildlich klarzumachen das dies falsch sein muß. Das man dazu nun nicht gleich mit matheamtisch korrekten Formeln und "Spezialwissen" kommen kann ist bei dem allgemeinen Niveau in der DP nur verständlich. Das hat nichts mit Überheblichkeit oder so zu tuen, sondern mit einer Notwendigkeit. Also auch wenn du oder ich es mathamtisch korrekt besser wissen stellt sich die Frage wie man es einem Laien verständlich rüberbringt. Dabei kann man nun versuchen alles, von Anfang an, zu erklären und so die komplette Mathematik hier erklären, oder aber man schraubt sein eigenes Niveau auf ein sinnvolles Maß runter und erklärt es nachvollziehbar. Es ist nun halt mal so das es viele Leute gibt die das Thema interessiert aber nicht alle Vorraussetzungen im Wissen besitzen. Sich dann hinzustellen und mit komplizierten, aber richtigen, mathematischen Wissen zu erklären finde ich unintelligent und im Grunde überheblich. Denn gerade ein Experte auf einem Gebiet muß sich nach unten hin anpassen und nicht davon ausgehen das alle Anderen nun ihr fehlendes Spezialwissen erstmal komplett aufbesseren müssen damit sie den Experten verstehen. Und mal ehrlich

Zitat von gausi:
Man, da ziehts einem ja die Schuhe aus, was teilweise hier so erzählt wird...
Ein bißchen Algebra zum Thema Primzahl:
empfindest du dies als richtigen Einstieg ? Besonders im Hinblick das der nachfolgende Absatz mit doch schon komplizierten Erklärungen daherkommt ? Nochmals: lese den kompletten Thread und versuche mal einzuschätzen für WEN du deine Antwort da erstellt hast. Klar ich könnte unterstellen das du garkein Interesse daran hättest das andere Leute ein neues Wissen aufbauen können, sie also lernen können. Aber das tue ich nicht !


Nun zum akademischem Hintergrund. Nein ich habe Mathematik nicht studiert und das tut auch nichts zur Sache. Oder meinst du das nur ein Mensch mit akademischen Titel das Recht hätte über solche Themen zu diskutieren ?
Ich kann aber einige mathematische Kenntnisse auch im praktischen vorweisen, also rede nicht nur von der Theorie sondern auch Praxis. Siehe dazu mein DECMath das besonders zahlentheoretische Aspekte praktisch umsetzt. DECMath kannst du dir hier http://www.michael-puff.de/Developer...agen_Reddmann/ anschauen.

Zitat:
... dass dir ein Axiom als Begründung nicht ausreicht. Das hat nichts mit Glauben zu tun, sondern mit einer allgemeinen Vereinbarung, die sich als sinnvoll herausgestellt hat.
Das ist ja alles korrekt was du da sagst, aber es geht hier eben darum zu hinterfragen WARUM das so sinnvoll sein muß. Das Axiom als solches stellt keiner hier ernsthaft in Frage, es wäre aber fatal ein Axiom einfach als gegeben hinzunehmen ohne verstanden zu haben warum es existiert ! Das wäre nämlich Glauben und nicht Wissen warum.
Schau mal: mir geht es darum das wenn man ein Axiom verstanden hat, also nicht nur einfach hinnimmt, sich daraus automatisch bestimmte Erkenntisse ableiten. Diese neuen Erkentisse beantworten dann auch andere Fragen. Wir gehen also im Grunde den umgekehrten Weg wie diejenigen Mathmatiker die diese Axiome postuliert haben. Diese Leute hatten es weit schwieriger da sie ja aus den theoretisch/praktischen Erfordernissen einer funktionsfähigen Mathematik erstmal diese Axiome aufstellen mussten. Nun das was uns interessiert sind diese Gründe.

Zitat von Gausi:
Das mit der eindeutigen Primfaktorzerlegung: Ich weiß nicht, wo du das aufgeschnappt hast, und wieso du jetzt auf so Kleinkram rumreitest. Ich hoffe, dir ist klar, dass das, was man in der Schule als eindeutige Primfaktorzerlegung kennenlernt, ein Spezialfall des Hauptsatzes der Arithmetik ist, der allgemein auf Hauptidealringen gilt. Um die Eindeutigkeit zu erreichen, muss man dabei die einzelnen primen Elemente (die "Primzahlen") in Äquivalenzklassen einteilen. Die Eindeutigkeit bezieht sich dann auf diese Äquivalenzklassen (z.B. wäre 5 und -5 in einer Äquivalenzklasse), nicht auf die einzelnen primen Elemente.
Siehst du das meine ich. Ja mir ist klar wovon du redest immerhin ist sind solche Feststellungen die Grundlage der heutigen Kryptographie=Zahlentheorie. Aber meinst du das erklärt auf verständliche Weise das WARUM einem interssierten Laien ?

Gruß Hagen

PS: Kann es sein das du ein gläubiger Mensch bist ? Christ ?
  Mit Zitat antworten Zitat