Registriert seit: 17. Jul 2005
885 Beiträge
Delphi 11 Alexandria
|
Re: Primzahlen bis ins Unendliche
5. Apr 2006, 10:04
@Hagen: Sag mal bitte, auf welchem Niveau du argumentierst. Ist das nun Stammtisch-Mathematik, was du betreibst, hast du fundierte Mathekenntnisse aus der Schule oder vielleicht gar studiert?
Du fängst hier an, gegen Halbwissen zu wettern, bist aber auf der anderen Seite der Meinung, dass dir ein Axiom als Begründung nicht ausreicht. Das hat nichts mit Glauben zu tun, sondern mit einer allgemeinen Vereinbarung, die sich als sinnvoll herausgestellt hat. Ob aber nun 1 eine Primzahl ist oder nicht, dass hat nichts mit Axiomen zu tun, sondern ist Definitionssache. Genauso wie es Definitionssache ist, ob man 0 als natürliche Zahl ansieht oder nicht. Bei einigen Anwendungen ist es sinnvoll, die 0 zuzulassen, bei anderen nicht.
Ein Axiom der reellen Zahlen ist z.B. dass jede nicht-leere nach oben beschränkte Teilmenge von IR eine kleinste obere Schranke besitzt (in einigen Lehrbüchern kommt das auch als Satz. Man kann aber zeigen, dass dies mit dem Archimedischen Axiom und Vollständigkeitsaxiom äquivalent ist, so dass man diesen Satz anstelle der beiden anderen ebensogut als Axiom verwenden kann.) Es gab mal (gibt?) ein "Experiment", wo jemand eine "neue Mathematik" aufgebaut hat, indem er dieses Axiom nicht anerkannt hat. Kann man machen. Es hat sich aber gezeigt, dass die Mathe-Welt mit diesem Axiom die Wirklichkeit besser beschreibt. (afaik hat das auch was mit den Konstruktivisten zu tun, bin mir aber da nicht ganz sicher.)
Das mit der eindeutigen Primfaktorzerlegung: Ich weiß nicht, wo du das aufgeschnappt hast, und wieso du jetzt auf so Kleinkram rumreitest. Ich hoffe, dir ist klar, dass das, was man in der Schule als eindeutige Primfaktorzerlegung kennenlernt, ein Spezialfall des Hauptsatzes der Arithmetik ist, der allgemein auf Hauptidealringen gilt. Um die Eindeutigkeit zu erreichen, muss man dabei die einzelnen primen Elemente (die "Primzahlen") in Äquivalenzklassen einteilen. Die Eindeutigkeit bezieht sich dann auf diese Äquivalenzklassen (z.B. wäre 5 und -5 in einer Äquivalenzklasse), nicht auf die einzelnen primen Elemente.
Der Satz, dass es eine eindeutige Primzahlzerlegung gibt, beschränkt sich dabei künstlich auf die natürlichen Zahlen, um die Schüler nicht unnötig zu verwirren. Es ist richtig, dass man im allgemeinen positive Zahlen meint, wenn man von Primzahlen spricht. Zahlentheoretisch gesehen ist das aber unnötig oder sogar fatal, weil die natürlichen Zahlen noch nichtmal ein Gruppe bilden (das ist das, was ich mit "nichts vernünftiges" oben meinte).
Was ich jetzt nicht noch verstanden habe ist, was das Primzahlaxiom ist...
Natürlich muss man in der Mathematik exakt sein und klar formulieren. Aber die Argumentation zum Beweis, dass es unendlich viele Primzahlen gibt, ist absolut korrekt - einen logischen Fehler kann ich darin nicht erkennen. Man nimmt an, dass es endlich viele Primzahlen gibt, multipliziert alle auf und addiert dann 1. Das Ergebnis ist dann durch keine der Primzahlen teilbar (wir haben ja angenommen, das es nur diese endlich vielen gibt). Folglich wäre diese neue Riesenzahl auch eine Primzahl, was im Widerspruch zu der Annahme steht, dass wir alle Primzahlen bereits gefunden haben. Folglich ist die Annahme falsch, womit bewiesen wäre, dass es unendlich viele gibt.
Das ist ein absolut wasserdichter Widerspruchsbeweis.
Ich möchte mich übrigens korrigieren: Was ich oben als prim bezeichnet habe, ist die Definition für irreduzibel. Ein Element a heißt prim wenn: a|b*c => (a|b v a|c). Aus der Primeigenschaft folgt aber das, was ich oben fälschlicherweise als prim bezeichnet habe.
|