Moin!
Wenn jemanden von euch vor Allem die Anwendung von Primzahlen interessiert, empfehle ich Codes von Simon Singh, ein tolles Buch über Verschlüsslungen.
Back zum Thema:
@Tomislav: Was hast du denn mit der Primzahl vor? Geht es dir darum, das ganze zu ermitteln oder brauchst du einfach eine Primzahl für irgendein Programm? Die größte Primzahl wirst du nicht finden, das hat Euklid bereits bewiesen. Angenommen, es gibt nur endlich viele Primzahlen. Du nimmst diese (nennen wir sie mal p1, p2, ..., und pn, wobei pn die größte ist) und bildest das Produkt aus denen:
Damit bekommst du eine Zahl, die durch p1, p2, ... und pn teilbar ist. Schauen wir uns jetzt y = x + 1 darf, darf dies keine Primzahl sein, da diese ja endlich sind und allesamt kleiner als y sind. y ist also
keine Primzahl.
Schaue ich mir dann die Primfaktorzerlegung von y an, erhalte ich - siehe da - lauter Primzahlen, die allesamt Teiler von y sein müssen. Da y aber durch keine unserer endlichen Primzahlen teilbar ist (sondern nur mit dem Rest 1), muss es eine weitere Primzahl geben, die nicht p1, p2, ... oder pn ist.
Soweit klar?
Eine größte Primzahl gibt es damit nicht, da wären wir wieder beim Thema Unendlichkeit angelangt. Das einzigste, was du machen kannst, ist zu versuchen, eine möglichst große Primzahl zu finden. Da wirst du aber, wie hier bereits gesagt wurde, nicht gegen Großrechner antreten können - Es sei denn, du entwickelst einen Algorithmus, der dir für n die n-te Primzahl ausspuckt, denn so ein wunderding gibt es bisher noch nicht. Es gibt zwar allerhand Wege, sehr wahrscheinlich Primzahlen zu finden, angefangen bei den Fermat-Zahlen (Gibt es außerdem einen wunderschönen Gegenbeweis, das der Weg falsch ist
), aber das Wundermittel wurde leider noch nicht erfunden.
So, hoffe, ich hab dir etwas geholfen!
Gruß
"Optimistisch ist diejenige Weltanschauung, die das Sein höher als das Nichts stellt und so die Welt und das Leben als etwas an sich Wertvolles bejaht."
Albert Schweitzer