AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Sonstige Fragen zu Delphi Delphi Record Aufgabe mit Tangens Berechnung! Aber wie?
Thema durchsuchen
Ansicht
Themen-Optionen

Record Aufgabe mit Tangens Berechnung! Aber wie?

Offene Frage von "-Xylakant-"
Ein Thema von -Xylakant- · begonnen am 11. Jan 2005 · letzter Beitrag vom 11. Jan 2005
 
Benutzerbild von Aenogym
Aenogym

Registriert seit: 7. Mär 2004
Ort: Schwerin
1.089 Beiträge
 
Delphi 7 Enterprise
 
#3

Re: Record Aufgabe mit Tangens Berechnung! Aber wie?

  Alt 11. Jan 2005, 14:56
hi,

tangens: gegenkathete geteilt durch ankathete.
du benötigst also zwei seiten des dreiecks. was das nun mit der steigung und so zu tun hat wüsste ich auch gern. der wird schließlich nur am dreieck berechnet.

also ich kann mir anhand des records nur vorstellen, dass du eine lineare funktion hast, dessen graphen zusammen mit den achsen des koordinatensystems ein dreieck bildet. nun musst du über den tangens den winkel des graphen zur x-achse berechnen (gleichung umstellen )

edit: wofür steht Ord_abschnitt?
edit2: schon klar, war ja abschnitt auf der y-achse

also die aufgabe ist somit ganz leicht:

du hast eine funktion. der graph dieser funktion ist ja in einem bestimmten winkel zur x-achse (abszisse ). den winkel musst du nur berechnen. den tangens dann einfach mit Delphi-Referenz durchsuchentan() berechnen.

Aenogym
Steffen Rieke
Was nicht buzzt, wird buzzend gemacht!
http://blog.base-records.de
http://www.base-records.de
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 21:50 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz