(Gast)
n/a Beiträge
|
nochmal c++ nach delphi
22. Jun 2005, 14:15
hallo dp fans,
ich muss was für jemanden schreiben und auch etwas vorhandenes irgendwie in delphi umsetzen hier ist der code den ich in delphi irgendwie formulieren muss:
Delphi-Quellcode:
void imdct_do_256(double data[], double delay[]);
void imdct_do_512(double data[], double delay[]);
typedef struct complex_s
{
double real;
double imag;
} complex_t;
static uint_8 bit_reverse_512[128] = {
0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c,
0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72,
0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a,
0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76,
0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e,
0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71,
0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79,
0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75,
0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d,
0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73,
0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b,
0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
static uint_8 bit_reverse_256[64] = {
0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38,
0x04, 0x24, 0x14, 0x34, 0x0c, 0x2c, 0x1c, 0x3c,
0x02, 0x22, 0x12, 0x32, 0x0a, 0x2a, 0x1a, 0x3a,
0x06, 0x26, 0x16, 0x36, 0x0e, 0x2e, 0x1e, 0x3e,
0x01, 0x21, 0x11, 0x31, 0x09, 0x29, 0x19, 0x39,
0x05, 0x25, 0x15, 0x35, 0x0d, 0x2d, 0x1d, 0x3d,
0x03, 0x23, 0x13, 0x33, 0x0b, 0x2b, 0x1b, 0x3b,
0x07, 0x27, 0x17, 0x37, 0x0f, 0x2f, 0x1f, 0x3f};
static complex_t buf[128];
/* Twiddle factor LUT */
static complex_t *w[7];
static complex_t w_1[1];
static complex_t w_2[2];
static complex_t w_4[4];
static complex_t w_8[8];
static complex_t w_16[16];
static complex_t w_32[32];
static complex_t w_64[64];
/* Twiddle factors for IMDCT */
static double xcos1[128];
static double xsin1[128];
static double xcos2[64];
static double xsin2[64];
/* Delay buffer for time domain interleaving */
static double delay[6][256];
/* Windowing function for Modified DCT */
static double window[] = {
0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130,
0.00157, 0.00187, 0.00220, 0.00256, 0.00297, 0.00341, 0.00390, 0.00443,
0.00501, 0.00564, 0.00632, 0.00706, 0.00785, 0.00871, 0.00962, 0.01061,
0.01166, 0.01279, 0.01399, 0.01526, 0.01662, 0.01806, 0.01959, 0.02121,
0.02292, 0.02472, 0.02662, 0.02863, 0.03073, 0.03294, 0.03527, 0.03770,
0.04025, 0.04292, 0.04571, 0.04862, 0.05165, 0.05481, 0.05810, 0.06153,
0.06508, 0.06878, 0.07261, 0.07658, 0.08069, 0.08495, 0.08935, 0.09389,
0.09859, 0.10343, 0.10842, 0.11356, 0.11885, 0.12429, 0.12988, 0.13563,
0.14152, 0.14757, 0.15376, 0.16011, 0.16661, 0.17325, 0.18005, 0.18699,
0.19407, 0.20130, 0.20867, 0.21618, 0.22382, 0.23161, 0.23952, 0.24757,
0.25574, 0.26404, 0.27246, 0.28100, 0.28965, 0.29841, 0.30729, 0.31626,
0.32533, 0.33450, 0.34376, 0.35311, 0.36253, 0.37204, 0.38161, 0.39126,
0.40096, 0.41072, 0.42054, 0.43040, 0.44030, 0.45023, 0.46020, 0.47019,
0.48020, 0.49022, 0.50025, 0.51028, 0.52031, 0.53033, 0.54033, 0.55031,
0.56026, 0.57019, 0.58007, 0.58991, 0.59970, 0.60944, 0.61912, 0.62873,
0.63827, 0.64774, 0.65713, 0.66643, 0.67564, 0.68476, 0.69377, 0.70269,
0.71150, 0.72019, 0.72877, 0.73723, 0.74557, 0.75378, 0.76186, 0.76981,
0.77762, 0.78530, 0.79283, 0.80022, 0.80747, 0.81457, 0.82151, 0.82831,
0.83496, 0.84145, 0.84779, 0.85398, 0.86001, 0.86588, 0.87160, 0.87716,
0.88257, 0.88782, 0.89291, 0.89785, 0.90264, 0.90728, 0.91176, 0.91610,
0.92028, 0.92432, 0.92822, 0.93197, 0.93558, 0.93906, 0.94240, 0.94560,
0.94867, 0.95162, 0.95444, 0.95713, 0.95971, 0.96217, 0.96451, 0.96674,
0.96887, 0.97089, 0.97281, 0.97463, 0.97635, 0.97799, 0.97953, 0.98099,
0.98236, 0.98366, 0.98488, 0.98602, 0.98710, 0.98811, 0.98905, 0.98994,
0.99076, 0.99153, 0.99225, 0.99291, 0.99353, 0.99411, 0.99464, 0.99513,
0.99558, 0.99600, 0.99639, 0.99674, 0.99706, 0.99736, 0.99763, 0.99788,
0.99811, 0.99831, 0.99850, 0.99867, 0.99882, 0.99895, 0.99908, 0.99919,
0.99929, 0.99938, 0.99946, 0.99953, 0.99959, 0.99965, 0.99969, 0.99974,
0.99978, 0.99981, 0.99984, 0.99986, 0.99988, 0.99990, 0.99992, 0.99993,
0.99994, 0.99995, 0.99996, 0.99997, 0.99998, 0.99998, 0.99998, 0.99999,
0.99999, 0.99999, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 };
static complex_t cmplx_mult(complex_t a, complex_t b)
{
complex_t ret;
ret.real = a.real * b.real - a.imag * b.imag;
ret.imag = a.real * b.imag + a.imag * b.real;
return ret;
}
void imdct_init()
{
int i, k;
complex_t angle_step;
complex_t current_angle;
/* Twiddle factors to turn IFFT into IMDCT */
for(i=0; i<128; i++)
{
xcos1[i] = cos(2.0 * M_PI * (8*i+1)/(8*N));
xsin1[i] = sin(2.0 * M_PI * (8*i+1)/(8*N));
}
/* More twiddle factors to turn IFFT into IMDCT */
for(i=0; i<64; i++)
{
xcos2[i] = cos(2.0 * M_PI * (8*i+1)/(4*N));
xsin2[i] = sin(2.0 * M_PI * (8*i+1)/(4*N));
}
/* Canonical twiddle factors for FFT */
w[0] = w_1;
w[1] = w_2;
w[2] = w_4;
w[3] = w_8;
w[4] = w_16;
w[5] = w_32;
w[6] = w_64;
for( i = 0; i < 7; i++)
{
angle_step.real = cos(-2.0 * M_PI / (1 << (i+1)));
angle_step.imag = sin(-2.0 * M_PI / (1 << (i+1)));
current_angle.real = 1.0;
current_angle.imag = 0.0;
for (k = 0; k < 1 << i; k++)
{
w[i][k] = current_angle;
current_angle = cmplx_mult(current_angle, angle_step);
}
}
ZeroMemory(&delay, sizeof(delay));
}
void imdct_do_512(double data[], double delay[])
{
int i, k;
int p, q;
int m;
int two_m;
int two_m_plus_one;
double tmp_a_i, tmp_a_r, tmp_b_i, tmp_b_r;
double *data_ptr, *delay_ptr, *window_ptr;
// Pre IFFT complex multiply plus IFFT cmplx conjugate and bit reverse permutation
for(i=0; i < 128; i++)
{
k = bit_reverse_512[i];
/* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
buf[k].real = data[255 - (i<<1)] * xcos1[i] - data[i<<1] * xsin1[i];
buf[k].imag = - data[i<<1] * xcos1[i] - data[255 - (i<<1)] * xsin1[i];
}
// FFT Merge
for (m=0; m<7; m++)
{
if (m)
two_m = 1<<m;
else
two_m = 1;
two_m_plus_one = 1<<(m+1);
for(k=0; k<two_m; k++)
{
for(i=0; i<128; i+=two_m_plus_one)
{
p = k + i;
q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
}
}
}
/* Post IFFT complex multiply plus IFFT complex conjugate*/
for(i=0; i<128; i++)
{
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
// Note that I flipped the signs on the imaginary ops to do the complex conj
buf[i].real = tmp_a_r * xcos1[i] + tmp_a_i * xsin1[i];
buf[i].imag = tmp_a_r * xsin1[i] - tmp_a_i * xcos1[i];
}
data_ptr = data;
delay_ptr = delay;
window_ptr = window;
/* Window and convert to real valued signal */
for(i=0; i<64; i++)
{
*data_ptr++ = 2.0 * (-buf[64+i].imag * *window_ptr++ + *delay_ptr++);
*data_ptr++ = 2.0 * ( buf[63-i].real * *window_ptr++ + *delay_ptr++);
}
for(i=0; i<64; i++)
{
*data_ptr++ = 2.0 * (-buf[i].real * *window_ptr++ + *delay_ptr++);
*data_ptr++ = 2.0 * ( buf[127-i].imag * *window_ptr++ + *delay_ptr++);
}
/* The trailing edge of the window goes into the delay line */
delay_ptr = delay;
for(i=0; i<64; i++)
{
*delay_ptr++ = -buf[64+i].real * *--window_ptr; // 64 - 127
*delay_ptr++ = buf[63-i].imag * *--window_ptr; // 63 - 0
}
for(i=0; i<64; i++)
{
*delay_ptr++ = buf[i].imag * *--window_ptr; // 0 - 63
*delay_ptr++ = -buf[127-i].real * *--window_ptr; // 127 - 64
}
}
void imdct_do_256(double data[], double delay[])
{
int i, k;
int p, q;
int m;
int two_m;
int two_m_plus_one;
double tmp_a_i, tmp_a_r, tmp_b_i, tmp_b_r;
double *data_ptr, *delay_ptr, *window_ptr;
complex_t *buf_1, *buf_2;
buf_1 = &buf[0];
buf_2 = &buf[64];
// Pre IFFT complex multiply plus IFFT cmplx conjugate and bit reverse
// permutation
for(i=0; i<64; i++)
{
/* X1[i] = X[2*i] */
/* X2[i] = X[2*i+1] */
k = bit_reverse_256[i];
p = (127 - (i<<1))<<1;
q = i<<2;
/* Z1[i] = (X1[128-2*i-1] + j * X1[2*i]) * (xcos2[i] + j * xsin2[i]); */
buf_1[k].real = data[p] * xcos2[i] - data[q] * xsin2[i];
buf_1[k].imag = - data[q] * xcos2[i] - data[p] * xsin2[i];
/* Z2[i] = (X2[128-2*i-1] + j * X2[2*i]) * (xcos2[i] + j * xsin2[i]); */
buf_2[k].real = data[p + 1] * xcos2[i] - data[q + 1] * xsin2[i];
buf_2[k].imag = - data[q + 1] * xcos2[i] - data[p + 1] * xsin2[i];
}
// FFT Merge
for (m=0; m<6; m++)
{
two_m = 1<<m;
two_m_plus_one = 1<<(m+1);
if(m)
two_m = 1<<m;
else
two_m = 1;
for(k=0; k<two_m; k++)
{
for(i=0; i<64; i+=two_m_plus_one)
{
p = k + i;
q = p + two_m;
// Do block 1
tmp_a_r = buf_1[p].real;
tmp_a_i = buf_1[p].imag;
tmp_b_r = buf_1[q].real * w[m][k].real - buf_1[q].imag * w[m][k].imag;
tmp_b_i = buf_1[q].imag * w[m][k].real + buf_1[q].real * w[m][k].imag;
buf_1[p].real = tmp_a_r + tmp_b_r;
buf_1[p].imag = tmp_a_i + tmp_b_i;
buf_1[q].real = tmp_a_r - tmp_b_r;
buf_1[q].imag = tmp_a_i - tmp_b_i;
//Do block 2
tmp_a_r = buf_2[p].real;
tmp_a_i = buf_2[p].imag;
tmp_b_r = buf_2[q].real * w[m][k].real - buf_2[q].imag * w[m][k].imag;
tmp_b_i = buf_2[q].imag * w[m][k].real + buf_2[q].real * w[m][k].imag;
buf_2[p].real = tmp_a_r + tmp_b_r;
buf_2[p].imag = tmp_a_i + tmp_b_i;
buf_2[q].real = tmp_a_r - tmp_b_r;
buf_2[q].imag = tmp_a_i - tmp_b_i;
}
}
}
// Post IFFT complex multiply
for(i=0; i<64; i++)
{
// Note that I flipped the signs on the imaginary ops to do the complex conj
/* y1[n] = z1[n] * (xcos2[n] + j * xsin2[n]) ; */
tmp_a_r = buf_1[i].real;
tmp_a_i = buf_1[i].imag;
buf_1[i].real = tmp_a_r * xcos2[i] + tmp_a_i * xsin2[i];
buf_1[i].imag = tmp_a_r * xsin2[i] - tmp_a_i * xcos2[i];
/* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */
tmp_a_r = buf_2[i].real;
tmp_a_i = buf_2[i].imag;
buf_2[i].real = tmp_a_r * xcos2[i] + tmp_a_i * xsin2[i];
buf_2[i].imag = tmp_a_r * xsin2[i] - tmp_a_i * xcos2[i];
}
data_ptr = data;
delay_ptr = delay;
window_ptr = window;
/* Window and convert to real valued signal */
for(i=0; i<64; i++)
{
*data_ptr++ = 2.0 * (-buf_1[i].imag * *window_ptr++ + *delay_ptr++);
*data_ptr++ = 2.0 * ( buf_1[63-i].real * *window_ptr++ + *delay_ptr++);
}
for(i=0; i<64; i++)
{
*data_ptr++ = 2.0 * (-buf_1[i].real * *window_ptr++ + *delay_ptr++);
*data_ptr++ = 2.0 * ( buf_1[63-i].imag * *window_ptr++ + *delay_ptr++);
}
delay_ptr = delay;
for(i=0; i<64; i++)
{
*delay_ptr++ = -buf_2[i].real * *--window_ptr;
*delay_ptr++ = buf_2[63-i].imag * *--window_ptr;
}
for(i=0; i<64; i++)
{
*delay_ptr++ = buf_2[i].imag * *--window_ptr;
*delay_ptr++ = -buf_2[63-i].real * *--window_ptr;
}
}
void imdct(bsi_t *bsi, audblk_t *audblk, stream_samples_t samples)
{
int i;
for(i=0; i<bsi->nfchans; i++)
{
if(audblk->blksw[i])
imdct_do_256(samples[i], delay[i]);
else
imdct_do_512(samples[i], delay[i]);
}
if (bsi->lfeon)
imdct_do_512(samples[5], delay[5]);
}
Hier die ac3.h die math.h ist ja bei c++ schon vorhanden
Delphi-Quellcode:
#include <windows.h>
typedef unsigned int uint_32;
typedef unsigned short uint_16;
typedef unsigned char uint_8;
typedef signed int sint_32;
typedef signed short sint_16;
typedef signed char sint_8;
uint_32 ac3_decode_data(uint_8 *data_start, uint_32 length, uint_32 start);
/* Exponent strategy constants */
#define EXP_REUSE (0)
#define EXP_D15 (1)
#define EXP_D25 (2)
#define EXP_D45 (3)
/* Delta bit allocation constants */
#define DELTA_BIT_REUSE (0)
#define DELTA_BIT_NEW (1)
#define DELTA_BIT_NONE (2)
#define DELTA_BIT_RESERVED (3)
/* samples work structure */
typedef double stream_samples_t[6][256];
typedef struct syncinfo_s
{
/* Sync word == 0x0B77 */
uint_16 syncword;
/* crc for the first 5/8 of the sync block */
/* uint_16 crc1; */
/* Stream Sampling Rate (kHz) 0 = 48, 1 = 44.1, 2 = 32, 3 = reserved */
uint_16 fscod;
/* Frame size code */
uint_16 frmsizecod;
/* Information not in the AC-3 bitstream, but derived */
/* Frame size in 16 bit words */
uint_16 frame_size;
/* Bit rate in kilobits */
uint_16 bit_rate;
/* sampling rate in hertz */
uint_32 sampling_rate;
} syncinfo_t;
typedef struct bsi_s
{
/* Bit stream identification == 0x8 */
uint_16 bsid;
/* Bit stream mode */
uint_16 bsmod;
/* Audio coding mode */
uint_16 acmod;
/* If we're using the centre channel then */
/* centre mix level */
uint_16 cmixlev;
/* If we're using the surround channel then */
/* surround mix level */
uint_16 surmixlev;
/* If we're in 2/0 mode then */
/* Dolby surround mix level - NOT USED - */
uint_16 dsurmod;
/* Low frequency effects on */
uint_16 lfeon;
/* Dialogue Normalization level */
uint_16 dialnorm;
/* Compression exists */
uint_16 compre;
/* Compression level */
uint_16 compr;
/* Language code exists */
uint_16 langcode;
/* Language code */
uint_16 langcod;
/* Audio production info exists*/
uint_16 audprodie;
uint_16 mixlevel;
uint_16 roomtyp;
/* If we're in dual mono mode (acmod == 0) then extra stuff */
uint_16 dialnorm2;
uint_16 compr2e;
uint_16 compr2;
uint_16 langcod2e;
uint_16 langcod2;
uint_16 audprodi2e;
uint_16 mixlevel2;
uint_16 roomtyp2;
/* Copyright bit */
uint_16 copyrightb;
/* Original bit */
uint_16 origbs;
/* Timecode 1 exists */
uint_16 timecod1e;
/* Timecode 1 */
uint_16 timecod1;
/* Timecode 2 exists */
uint_16 timecod2e;
/* Timecode 2 */
uint_16 timecod2;
/* Additional bit stream info exists */
uint_16 addbsie;
/* Additional bit stream length - 1 (in bytes) */
uint_16 addbsil;
/* Additional bit stream information (max 64 bytes) */
uint_8 addbsi[64];
/* Information not in the AC-3 bitstream, but derived */
/* Number of channels (excluding LFE)
* Derived from acmod */
uint_16 nfchans;
} bsi_t;
/* more pain */
typedef struct audblk_s
{
/* block switch bit indexed by channel num */
uint_16 blksw[5];
/* dither enable bit indexed by channel num */
uint_16 dithflag[5];
/* dynamic range gain exists */
uint_16 dynrnge;
/* dynamic range gain */
uint_16 dynrng;
/* if acmod==0 then */
/* dynamic range 2 gain exists */
uint_16 dynrng2e;
/* dynamic range 2 gain */
uint_16 dynrng2;
/* coupling strategy exists */
uint_16 cplstre;
/* coupling in use */
uint_16 cplinu;
/* channel coupled */
uint_16 chincpl[5];
/* if acmod==2 then */
/* Phase flags in use */
uint_16 phsflginu;
/* coupling begin frequency code */
uint_16 cplbegf;
/* coupling end frequency code */
uint_16 cplendf;
/* coupling band structure bits */
uint_16 cplbndstrc[18];
/* Do coupling co-ords exist for this channel? */
uint_16 cplcoe[5];
/* Master coupling co-ordinate */
uint_16 mstrcplco[5];
/* Per coupling band coupling co-ordinates */
uint_16 cplcoexp[5][18];
uint_16 cplcomant[5][18];
/* Phase flags for dual mono */
uint_16 phsflg[18];
/* Is there a rematrixing strategy */
uint_16 rematstr;
/* Rematrixing bits */
uint_16 rematflg[4];
/* Coupling exponent strategy */
uint_16 cplexpstr;
/* Exponent strategy for full bandwidth channels */
uint_16 chexpstr[5];
/* Exponent strategy for lfe channel */
uint_16 lfeexpstr;
/* Channel bandwidth for independent channels */
uint_16 chbwcod[5];
/* The absolute coupling exponent */
uint_16 cplabsexp;
/* Coupling channel exponents (D15 mode gives 18 * 12 /3 encoded exponents */
uint_16 cplexps[18 * 12 / 3];
/* fbw channel exponents */
uint_16 exps[5][252 / 3];
/* channel gain range */
uint_16 gainrng[5];
/* low frequency exponents */
uint_16 lfeexps[3];
/* Bit allocation info */
uint_16 baie;
/* Slow decay code */
uint_16 sdcycod;
/* Fast decay code */
uint_16 fdcycod;
/* Slow gain code */
uint_16 sgaincod;
/* dB per bit code */
uint_16 dbpbcod;
/* masking floor code */
uint_16 floorcod;
/* SNR offset info */
uint_16 snroffste;
/* coarse SNR offset */
uint_16 csnroffst;
/* coupling fine SNR offset */
uint_16 cplfsnroffst;
/* coupling fast gain code */
uint_16 cplfgaincod;
/* fbw fine SNR offset */
uint_16 fsnroffst[5];
/* fbw fast gain code */
uint_16 fgaincod[5];
/* lfe fine SNR offset */
uint_16 lfefsnroffst;
/* lfe fast gain code */
uint_16 lfefgaincod;
/* Coupling leak info */
uint_16 cplleake;
/* coupling fast leak initialization */
uint_16 cplfleak;
/* coupling slow leak initialization */
uint_16 cplsleak;
/* delta bit allocation info */
uint_16 deltbaie;
/* coupling delta bit allocation exists */
uint_16 cpldeltbae;
/* fbw delta bit allocation exists */
uint_16 deltbae[5];
/* number of cpl delta bit segments */
uint_16 cpldeltnseg;
/* coupling delta bit allocation offset */
uint_16 cpldeltoffst[8];
/* coupling delta bit allocation length */
uint_16 cpldeltlen[8];
/* coupling delta bit allocation length */
uint_16 cpldeltba[8];
/* number of delta bit segments */
uint_16 deltnseg[5];
/* fbw delta bit allocation offset */
uint_16 deltoffst[5][8];
/* fbw delta bit allocation length */
uint_16 deltlen[5][8];
/* fbw delta bit allocation length */
uint_16 deltba[5][8];
/* skip length exists */
uint_16 skiple;
/* skip length */
uint_16 skipl;
//Removed Feb 2000 -ah
/* channel mantissas */
//sint_16 chmant[5][256];
/* coupling mantissas */
sint_16 cplmant[256];
//Removed Feb 2000 -ah
/* coupling mantissas */
//sint_16 lfemant[7];
/* Number of coupling sub-bands */
uint_16 ncplsubnd;
/* Number of combined coupling sub-bands
* Derived from ncplsubnd and cplbndstrc */
uint_16 ncplbnd;
/* Number of exponent groups by channel
* Derived from strmant, endmant */
uint_16 nchgrps[5];
/* Number of coupling exponent groups
* Derived from cplbegf, cplendf, cplexpstr */
uint_16 ncplgrps;
/* End mantissa numbers of fbw channels */
uint_16 endmant[5];
/* Start and end mantissa numbers for the coupling channel */
uint_16 cplstrtmant;
uint_16 cplendmant;
/* Decoded exponent info */
uint_16 fbw_exp[5][256];
uint_16 cpl_exp[256];
uint_16 lfe_exp[7];
/* Bit allocation pointer results */
uint_16 fbw_bap[5][256];
uint_16 cpl_bap[256];
uint_16 lfe_bap[7];
} audblk_t;
/* coeff */
void mantissa_init(void);
void coeff_unpack(bsi_t *bsi, audblk_t *audblk, stream_samples_t samples);
/* crc */
int crc_process_frame(uint_8 *data,uint_32 num_bytes);
/* downmix */
void drc_init(void);
void downmix(audblk_t *audblk, bsi_t* bsi, stream_samples_t stream_samples, sint_16 *s16_samples);
/* exponent */
#define UNPACK_FBW 1
#define UNPACK_CPL 2
#define UNPACK_LFE 4
void exponent_init(void);
void exponent_unpack( bsi_t *bsi, audblk_t *audblk);
/* imdct */
void imdct(bsi_t *bsi,audblk_t *audblk, stream_samples_t samples);
void imdct_init(void);
/* parse */
void parse_syncinfo(syncinfo_t *syncinfo,uint_8 *data);
void parse_audblk(bsi_t *bsi,audblk_t *audblk);
void parse_bsi(bsi_t *bsi);
/* rematrix */
void rematrix(audblk_t *audblk, stream_samples_t samples);
/* sanity check */
void sanity_check(bsi_t *bsi, audblk_t *audblk);
void InitialAC3(void);
unsigned char AC3Dec_Buffer[49152]; // 48KB/frame for 64~448 Kbps
uint_32 error_flag;
es ist sehr dringend ich bin jedoch leider damit etwas überfordert.
ich hoffe es gibt hier leute die mir helfen können
danke schon im vorraus
gruß
sebby
|