Hier mal die Areafunktionen (Hauptwerte):
Code:
Arsinh z = Ln( z + sqrt(z^2 + 1)
Arcosh z = Ln( z + sqrt(z^2 - 1)
Artanh z = Ln[sqrt((1 +z)/(1-z))]
Wobei alle vorkommenden Funktionen komplex sind, d.h. zB beim Artanh, dass Ln und Sqrt ein komplexes Ergebnis liefern müssen. Wegen den inversen Kreisfunktionen such ich noch. Hier noch die Hyperbelfunktionen, falls du sie noch nicht hast:
Code:
sinh z = sinh(x)*cos(y) + j*cosh(x)*sin(y)
cosh z = cosh(x)*cos(y) + j*sinh(x)*sin(y)
tanh z = [sinh(2x) + j*sinh(2y)]/[cosh(2x) + cos(2y)]
wobei z (komplex) = x+ jy. Hier sind die normalen Funktionen gemeint - also die normalen Hyperbelfunktionen (z.B. cos(2y) ist einfach der Cosinus vom Imaginärteil * 2)
Dust Signs
//EDIT:
Zitat:
Zum Thema 0^0: Es ist definiert: x^0 = 1 für alle x element R. Ich wüsste nicht, dass die 0 da einen Sonderfall darstellt.
Ist eine sogenannte unbestimmte Form und lässt sich durch Limesrechnung beweisen
//EDIT 2:
Hab die Arcusfunktionen doch noch gefunden - der Arcustangens fehlt noch, aber den treib ich noch irgendwo auf
Code:
Arcsin z = -j * Ln(j*z + Sqrt(1 - z^2))
Arccos z = -j * Ln(z + Sqrt(z^2 - 1))
wobei hier Ln und Sqrt auch wieder komplex arbeiten müssen