Zitat von
TOC:
Zitat von
Khabarakh:
Zitat von
Aenogym:
Zitat von
chkdsk:
Allerdings nicht mit so einer Waldorf-Methode.
also ich finde die methode echt gut. wie hast du es denn gelernt? ist deine methode einfacher?
Aenogym
Ich denke mal, er meint, dass Chegga es zwar sehr ausführlich erklärt hat, aber weniger die mathematische Erklärung angesprochen hat (0,|9| = 1 usw.).
PS: Wir hatten es Anfang der 9. Klasse im Zusammenhang mit reellen Zahlen. Das ist ja eine wichtige Aussage, dass sich jede rationale Zahl als Bruch darstellen lässt.
Also, das mit 0,|9| bereitet mir großes Kopfzerbrechen! Ich bin nur Hauptschüler! Deshalb sind meine mathematischen Kentnisse recht dürftig. Nach Cheggas Algorhytmus ist 0,|9|=1
!?! Ist dies nun ein Fehler oder nicht? Diskutiert ruhig mal weiter über Bruchrechnen und helft mir etwas auf die Sprünge
!
Ja, 0,|9| ist wirklich 1
. Die schwammige Erklärung: Es kann ja nichts mehr dazwischen liegen
. Die richtige, mit der man dann auch auf die Umwandlung von oben kommt: 1/9 ist ja 0,|1|, 2/9=0,|2|, also ist 0,|9|=9/9=1.
Zitat von
TOC:
Läßt sich wirklich jede rationale Zahl als Bruch darstellen? Ist Pi eine rationale Zahl? Oder Wurzel aus 2?
Ja, nein, nein
.
Zitat von
TOC:
Wenn ihr weitere interessante Bruch-Algorhytmen habt dann erklärt sie mir bitte.
Nett wäre noch eine Approximation von irrationalen Zahlen (z.B. durch Kettenbrüche
Zitat:
Näherungsbrüche aus Kettenbruchentwicklung
Aus den Folgegliedern der Kettenbruchentwicklung lassen sich sukkzessive Näherungsbrüche gewinnen. Wenn fi das i-te Folgeglied der Kettenbruchentwicklung ist, so ergibt sich der i-te Näherungsbruch zi/ni aus den Rekursionsformeln zi=fi·zi-1+zi-2 und ni=fi·ni-1+ni-2 mit z-2=0, z-1=1, n-2=1 und n-1=0.
Nimm einfach alle Nenner bis zu einer Höchstgrenze, dazu dann passende Zähler, wenn es sich nicht mehr als ein eingegebener Wert unterscheidet, wird es ausgegeben.
[edit]@Ultimator (bzw. TOC):
http://www.arndt-bruenner.de/mathe/9...irrational.htm