Einzelnen Beitrag anzeigen

Benutzerbild von dizzy
dizzy

Registriert seit: 26. Nov 2003
Ort: Lünen
1.932 Beiträge
 
Delphi 7 Enterprise
 
#23

Re: 2 kreise sollen bei kontakt abprallen

  Alt 28. Okt 2004, 03:23
Also ich hab jetzt mal etwas rumgegoogled, und bin doch sehr erstaunt darüber, dass es zu dem dezentralen Stoß von Kugeln erbärmlich wenig Material gibt.
Diese Tatsache, und das Bischen (wenig brauchbares) was ich gefunden habe zeigen mir, dass dies ein garnicht sooo leichtes Thema ist.

Aus einer Überlegung heraus würde ich behaupten, dass wenn eine Kugel steht, und von einer anderen getroffen wird, die stoßende Kugel einen Anteil ihres Impulses auf die ruhende Kugel überträgt, und zwar mit:

Impuls*cos(alpha)

wobei alpha der Winkel zwischen der Geraden durch die Mittelpunkte der Kugeln, und dem Richtungsvektor der stoßenden Kugel ist; und zwar zum Zeitpunkt des Aufpralls.

Die stoßende Kugel verliert diesen Impuls, so dass die Impulserhaltung gewahrt wäre. "Impuls" ist hier übrigends gleich mit Geschwindigkeit, verknüpft mit einer Richtung. Also entspricht der Impuls einem Vektor => dem Richtungsvektor. Seine Länge muss je Kugel entsprechend o.g. Zusammenhangs skaliert werden.

Was noch ein ganz anderes Problem ist: In welche Richtung zeigen denn die Vektoren nach dem Stoß?

Und was noch viel schlimmer ist: Wenn sich beide Kugeln bewegen, dann kann das noch mal ekeliger werden.

Es kann gut sein, dass ich mich durch das ganze Zeug dass ich gefunden habe jetzt völlig verbohrt bin, und dass das eigentlich voll einfach ist... ist ja auch nicht mehr so früh .
Mich würde eine Gesamtlösung für den dezentralen vollelastischen Stoß zweier nicht ruhender Kugeln jetzt auch sehr interessieren... da habt ihr was angerichtet .

Au Backe... wenn da noch Rotation+Gleitreibung+Haftreibung mit bei kommen... ich frage mich, wie so ein Billardspiel das macht... kann doch eigentlich garnicht so schwer sein, oder?



Oh warte! Idee!
Über die Vektoren könnte es tatsächlich recht einfach gehen.
Nennen wir mal einen Richtungsvektor der Kugel 1: V1 und der Kugel 2: V2
Nennen wir die Mittelpunkte der Kugeln: M1 und M2
Die Gerade durch die Mittelpunkte: G
Den Winkel von V1 zu G nennen wir a1,
den Winkel von V2 zu G nennen wir a2.

Der Impulsanteil der von Kugel 1 auf Kugel 2 übergeht ist dann:
cos(a1) (zum Zeitpunkt des Aufpralls)
Der Impulsanteil der von Kugel 2 auf Kugel 1 übergeht ist:
cos(a2) (zum Zeitpunkt des Aufpralls)

Dann ist der Richtungsvektor von Kugel 1 nach dem Stoß:
V1' = V1 + V2*cos(a2) - V1*(1-cos(a1))
Und der von Kugel 2:
V2' = V2 + V1*cos(a1) - V2*(1-cos(a2))

Damit wäre der Impuls gewahrt, und die Richtungen dürften auch stimmen. Ein wenig Kopfzerbrechen bereitet mir der Cosinus, aber ich hab das mal für ein paar Fälle von Hand gerechnet, und das sah nicht so falsch aus. (Vorausgesetzt ich hab zu dieser doch zu sehr fortgeschrittenen Zeit keine bösen Patzer gemacht .)

Ich geh jetzt erstmal an der Matratze horchen .
N8 alle!
Fabian
Fabian K.
INSERT INTO HandVonFreundin SELECT * FROM Himmel
  Mit Zitat antworten Zitat