Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
|
Re: Unbegrenzt viele Nachkommastellen
18. Okt 2004, 23:51
Hi Dano,
ich habe mich mal des NRoot() Problemes angenommen. Du hast natürlich Recht gehabt, NRoot() berechnet unter bestimmten Umständen den Rest falsch.
Hier mal der korregierte Source für NRoot() aus meiner Lib.
Delphi-Quellcode:
function NRoot( var A,R: IInteger; const B: IInteger; E: Integer): Boolean;
// A = B^(1/E), R = B - B^(1/E)^E, returns R == 0 if B is a perfect power of E
// NRoot(1MBit, 3) = 31.6 seconds
// TBigNum.NRoot(1MBit, 3) = 44.9 seconds
// @A, @R can be nil, if both are nil we can check for PerfectPower
// todo: apply a recursive karatsuba newton method, equal to NSqrt()
resourcestring
sNRoot = ' NRoot(), B must be > 0 and E > 0';
var
X,Y,T: IInteger;
I: Integer;
begin
Result := True;
if E <= 0 then NRaise(@sNRoot);
I := NSgn(B, True);
if I <= 0 then NRaise(@sNRoot);
if (E = 1) or (I = 1) then
begin
if @A <> nil then NSet(A, B);
if @R <> nil then NSet(R, 0);
end else
if E = 2 then
Result := NSqrt(A, R, B)
else
begin
NBit(Y, (NSize(B) + E -1) div E, True);
Dec(E);
repeat
NSet(X, Y);
NPow(T, Y, E);
NMul(Y, T, E);
NAdd(T, Y); // now here -> T = Y^E * (E +1)
NMul(Y, X);
NAdd(Y, B);
NDivRem(Y, T, Y, T);
I := NCmp(Y, X);
until I >= 0;
// HR, BugFIX!, we have to recompute on some circumstances the remainder
// Thanks to Dano to pointing me out this.
if I <> 0 then
begin
NPow(T, X, E +1);
NSub(T, B, T);
end;
Result := NSgn(T) = 0;
if @A <> nil then NSwp(A, X);
if @R <> nil then NSwp(R, T);
end;
end;
Gruß hagen
|