AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

2D- in 3D-Koordinate umrechnen

Ein Thema von milos · begonnen am 2. Mai 2016 · letzter Beitrag vom 18. Mai 2016
 
Benutzerbild von milos
milos

Registriert seit: 14. Jul 2008
Ort: Bern (CH)
510 Beiträge
 
Delphi 11 Alexandria
 
#19

AW: 2D- in 3D-Koordinate umrechnen

  Alt 18. Mai 2016, 01:52
Unglaublich!
Vielen vielen vielen dank hab's endlich geschafft!
Woooow, das war wohl das ekligste im Mathematik Bereich was ich bisher gemacht habe jedoch bin ich froh das du mir so gut unter die Arme gegriffen hast, hab es nun endlich verstanden das ich Vektoren und Skalare eigentlich als Matrizen betrachten und das man das so einfach untereinander oder nebeneinander schreiben kann.

Ich hoffe deine Beiträge hier werden auch in Zukunft anderen helfen, so wie du das alles 10 mal verinfacht für mich erklären musstest wird bestimmt jeder Depp das verstehen

Zitat:
determinant(inversion(M)) * (xy - a)
Das passt so nicht. (Fun Fact: Die Determinante der Inversen ist gleich dem inversen der Determinante. Du könntest das zu 1/determinant(M) vereinfachen.)
Du braucht die Determinante nicht, wenn du direkt die Inverse berechnest. (Du brauchst sie eventuell zur Berechnung der Inversen)
Okay, wenn du das hier ernst meinst gibts wieder ein paar die es nicht verstehen werden
Aber das meinst du doch nicht oder? xD

Freundliche Grüsse und danke nochmal, bist ein Schatz
Milos

Geändert von milos (18. Mai 2016 um 01:56 Uhr)
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 21:00 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz