AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Delphi-PRAXiS - Lounge Klatsch und Tratsch TV-Hinweis: Das Geheimnis der Mathematik
Thema durchsuchen
Ansicht
Themen-Optionen

TV-Hinweis: Das Geheimnis der Mathematik

Ein Thema von stahli · begonnen am 15. Jan 2016 · letzter Beitrag vom 22. Jan 2016
 
Benutzerbild von JasonDX
JasonDX
(CodeLib-Manager)

Registriert seit: 5. Aug 2004
Ort: München
1.062 Beiträge
 
#12

AW: TV-Hinweis: Das Geheimnis der Mathematik

  Alt 19. Jan 2016, 07:07
Mit Mathematik kann man zwar vieles recht gut (und vor allem präzis) beschreiben, dennoch ist sie keine Sprache, dazu fehlt ihr auch der Code bzw. die Codierung (ich meine damit nicht die mathematische Notation, die sehr wohl ein Code ist, sondern die Mathematik selbst).
Ich habe Schwierigkeiten, deinen Satz hier nachzuvollziehen. Was macht für dich eine Sprache aus? Du meinst später, eine Sprache kann nur gesprochen werden, aber ich spreche auch nicht mit dir, trotzdem kommunizieren wir zusammen über die deutsche Sprache. Kannst du mir die Eigenschaften etwas klarer nennen, die bspw. Esperanto zu einer Sprache machen, die Mathematik aber nicht?

Außerdem existieren mathematische Objekte sehr wohl, stellen demnach auch Realität dar. Mathematiker studieren etliche Jahre etwas sehr real existentes.
Kannst du mir diese realen Objekte beschreiben, welche du hier meinst?

Daß es real ist, zeigt sich schon daran, daß es gesetzmäßig ist, und diese Gesetze sind - soweit wir das mit unserem Geiste erfassen können - völlig unabhängig von unserem Geiste, unserem Intellekt.
Gesetze implizieren nicht Realität. Diese Gesetze (nennen wir sie mal aus Spaß an der Freude Axiome) entspringen lediglich unserem Geiste, unserem Intellekt. Die Axiome zu Kardinalszahlen sind alles andere als natürlich, wir haben sie uns selbst ausgedacht. Die können auch gut falsch sein, wir wissen es nicht (Und können es auch nicht garantieren).

Jedenfalls zweifelt z.B. niemand ernsthaft daran, daß die 2 eine Primzahl ist, und zwar unabhängig davon, daß wir diese Eigenschaft als solche erkennen.
Wie kann das unabhängig sein? Wie kann ich sagen "2 ist eine Primzahl", wenn ich die Eigenschaft "Primzahl" nicht erkenne? Wie kann ich behaupten ein Baum ist rot, wenn ich blind bin? Wir haben klar definiert, was eine Primzahl ist - diese Definition ist ein Ergebnis unserer Gedanken - und wenden diese Definition auf 2 an, um zu erkennen, dass 2 eine Primzahl ist.
Ohne die Eigenschaft einer Mersenne-Primzahlen als solche zu erkennen, kannst du mir sagen, ob 7 eine solche ist? Ist 13 eine?

Demnach werden auch Mathematiker fremder Welten diese Eigenschaft erkennen, sofern sie Mathematik betreiben und die Primzahleigenschaft als solche erkannt wurde.
Was, wenn Mathematiker fremder Welten überhaupt nicht das Konzept natürlicher Zahlen haben? Dann werden sie sich mit Primzahlen schwer tun. Ich halte es für unwahrscheinlich, dass andere Welten die genau gleichen Axiome produzieren wie wir.
Mike
Passion is no replacement for reason
 
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 07:47 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz