AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Gauß-Verfahren - Matrix lösen

Ein Thema von Danny92 · begonnen am 29. Aug 2015 · letzter Beitrag vom 1. Sep 2015
 
Dejan Vu
(Gast)

n/a Beiträge
 
#17

AW: Gauß-Verfahren - Matrix lösen

  Alt 29. Aug 2015, 19:46
Diese Diskussion à la 'Extended ist genau genug' ist Quark. Entschuldigung. Beim Rechnen mit sehr kleinen UND sehr großen Zahlen kommen falsche Ergebnisse heraus, außer! man rechnet genau. Und das kann man nun einmal nur mit exakten Brüchen machen. Ergo benötigt man als 'Zahl' Datentyp z.B. einen Record (oder ne Klasse) mit Zähler und Nenner. Dann definiert man noch die Operationen auf diesem Zahl-Datentyp und -wupps- werden die Ergebnisse genau.

Ich habe -wie erwähnt- mit Gauß und Extened bei Berechnungen zur Kälteleistung von Kühlkompressoren keine guten Erfahrungen gemacht. Es ist blöd, wenn die Kennlinien statt im Bereich von 600W dann bei -170 liegen, weil klitzekleine Ungenauigkeiten beim Rechnen passiert sind. Gut, ich hatte Glück, das LUP Dekomposition hier geholfen hat. Aber grundsätzlich sollte man das schon anders lösen.

Ich unterstelle dem TE im übrigen, sich in der Zahlentheorie und mit Genauigkeitsrechnungen auszukennen. Ich denke, da muss man nicht mehr den Besserwisser raushängen lassen. Natürlich ist niemand gemeint, ich habe das nur präventiv gesagt
  Mit Zitat antworten Zitat
 

 

Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 05:41 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz