AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Gauß-Verfahren - Matrix lösen

Ein Thema von Danny92 · begonnen am 29. Aug 2015 · letzter Beitrag vom 1. Sep 2015
 
Benutzerbild von jfheins
jfheins

Registriert seit: 10. Jun 2004
Ort: Garching (TUM)
4.579 Beiträge
 
#8

AW: Gauß-Verfahren - Matrix lösen

  Alt 29. Aug 2015, 13:30
Ein Gauß 40 x 40 dürfte bei Floats so 1 sec. brauchen. Das Problem hier dürfte dein Zahlenformat sein. Wie wäre es hingegen, mit Floats zu arbeiten und zur Ausgabe sich eine FloatToFrac zu schreiben. Hier das wäre mal ein Anfang.
Du musst aber einen langsamen Computer haben. Steht da TI-57 oder so drauf?
Ich habe mal MATLAB angeworfen auf meinem Desktop-PC von 2008. Ein 40x40 Gleichungssystem wird in 0,15ms gelöst. Eingabe "x = A\b;" entspricht anschaulich A^(-1)*b benutzt aber LU-Zerlegung.
Eine Gauss-Implementierung von Github schafft es immer noch in 0,6ms. Bei 400 Elementen ist es auffälliger, da braucht der Gauß 400ms und linsolve() 20ms.

Zum Thema: Du musst auf jeden Fall mit dem String-gerechne aufhören Vll. als erste Maßnahme mal Int64 für Zähler/Nenner hernehmen, oder wenn es WIRKLICH rational bleiben muss, dann auf Byte-Arrays für Zähle/Nenner gehen. Oder halt etwas Gehirnschmalz in eine eigene Div/Mod Funktion für Extended stecken und doch Gleitkommazahlen verwenden.
  Mit Zitat antworten Zitat
 

 

Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 07:42 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz