AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Gleichung umformen

Ein Thema von Bjoerk · begonnen am 16. Jan 2014 · letzter Beitrag vom 29. Jan 2014
Antwort Antwort
Benutzerbild von Desmulator
Desmulator

Registriert seit: 3. Mai 2007
Ort: Bonn
169 Beiträge
 
#1

AW: Gleichung umformen

  Alt 28. Jan 2014, 23:47
Um noch einen Beweis für die Divergenz der Reihe 1/n zu liefern.
Es sei zu bemerken: konvergente Reihe => Cauchy-Folge (der Abstand von Folgegliedern konvergiert gegen 0).
Wir zeigen nun, dass die Reihe 1/n keine Cauchy-Folge ist und somit insbesondere auch keine konvergente Folge sein kann, obwohl 1/n gegen 0 konvergiert.

Sei s_n die n-te Partialsumme. (Also die Summe von i = 1 bis n)
Wir erkennen s_2n - s_n = 1/(n+1)+1/(n+2)+...+1/2n >= n*(1/2n) = 1/2
Es folgt also, dass der Abstand zwischen bestimmen Folgegliedern nicht beliebig klein wird. Somit kann es keine Cauchyfolge sein und letztlich auch keine konvergente Folge. Die Bedingung a_n -> 0 ist also nur eine notwendige Bedingung und das auch nur für absolut konvergente Folgen. Schließlich kennt ja jeder den Umordnungssatz von Riemann, nachdem konvergente, aber nicht absolut konvergente, Reihen so umgeordnet werden können, dass jeder beliebige Wert als Grenzwert angenommen wird.

[Offtopic]
Wo wir gerade bei Mathe sind:
Es sei Z := {(x, y, z) ∈ ℝ³: x²+y² ≤ 1, 0 ≤ z ≤1} offensichtlich ein Zylinder (!).
Berechne das Intergal auf Z über z*exp(-z(x²+y²)).
Ich biete -e*π/2...?
Lars
There are 10 kinds of people in the world:
those who get binary, and those who don’t.
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 22:11 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz