AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Gleichung umformen

Ein Thema von Bjoerk · begonnen am 16. Jan 2014 · letzter Beitrag vom 29. Jan 2014
 
Furtbichler
(Gast)

n/a Beiträge
 
#13

AW: Gleichung umformen

  Alt 28. Jan 2014, 07:13
Seit ihr nicht etwas vom Thema abgekommen?

Ich hab gestern wieder etwas darüber gesehen (Summe 1-1+1-1...):

Es gibt mehrere Möglichkeiten, das auszurechnen. Die erste ist die, eine Formel zu finden, die die Summe S(n) für die Werte von 1..n ausrechnet. Im Idealfall hätte man eine Konstante C und einen von n abhängigen Anteil. Also
Summe(1..n)= C+f(n). Wenn man beweisen kann, das f(n) gegen 0 geht, hat man gewonnen. Z.B. bei der Reihe 1/2 + 1/4 +1/8... ist C=1 und f(n)=1/(2^n). Wenn n => unendlich geht, geht f(n)= 1/(2^n) gegen 0. Der Grenzwert ist also C=1. Das klappt bei unserer Reihe natürlich nicht.

Aber es gibt auch eine andere Möglichkeit: Man kann sich den Durschnitt aller Teilsummen [S(1)..S(n)] nehmen. Das ergibt eine neue Reihe, die so aussieht:
S1/1, (S1+S2)/2, (S1+S2+S3)/3..., (S1+S2+S3...+Sn)/n
Und wenn diese Reihe konvergiert, dann ist der Grenzwert eben genau die ursprüngliche Reihensumme. Für unsere Summe ergibt das ...
S1=1 (1)
S2=0 (1-1)
S3=1 (1-1+1)
...
Nun bilden wir den Durschnitt der ersten n Summen:
....
Für n=1 hätten wir [1]/1 = 1
Für n=2 hätten wir [1+0]/2 = 1/2 (also (S1+S0)/2)
Für n=3 hätten wir [1+0+1]/3 = 2/3
Für n=4 hätten wir [1+0+1+0]/4 = 2/4
Für n=10 hätten wir [1+0+1+0+1+0+1+0+1+0]/10= 5/10
Für n=11 hätten wir [1+0+1+0+1+0+1+0+1+0+1]/11= 5/11
...
Für n=1000 hätten wir [1+0....+1]/1000 = 500/1000
Für n=1001 hätten wir [1+0....+1+0]/1001=500/1001
Hmm. Offenbar pendeln sich die Teilsummen bei 1/2 ein (mal etwas mehr, mal genau). Der Durschnitt der ersten 1001 Teilsummen ist schon fast 1/2.. !?

Allgemein gesehen bekommen wir für wachsende n abwechselnd 1/2 bzw 1/2 + 1/2n. Nun geht aber 1/2n für wachsende n gegen 0. Also werden wir für n=> unendlich bei 1/2 landen. Zwangsweise.
q.e.d
Je größer n wird, desto näher liegen zwei Teilsummen beieinander und insgesammt bei 1/2. Wie kann es dann sein, das die Teilsumme bei n=unendlich plötzlich einen großen Sprung macht? Es ist doch eher so, das man annehmen kann, das sich die Summe für n=>unendlich bei 1/2 einpendelt. Was spricht dagegen?

Geändert von Furtbichler (28. Jan 2014 um 07:18 Uhr)
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 23:21 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz