AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren

Gleichung umformen

Ein Thema von Bjoerk · begonnen am 16. Jan 2014 · letzter Beitrag vom 29. Jan 2014
 
Namenloser

Registriert seit: 7. Jun 2006
Ort: Karlsruhe
3.724 Beiträge
 
FreePascal / Lazarus
 
#13

AW: Gleichung umformen

  Alt 17. Jan 2014, 15:27
Das ∑ ist ein großes Sigma und steht i.A. für die Summe über einen Term mit iterierbarem Anteil - in dem Fall i. Eigentlich schreibt man die Laufvariable mit Startwert unter das Sigma, und Zielwert darüber, aber ich glaube das Forum unterstützt keinen Tex-like Formelstring mit dem das hier so möglich gewesen wäre. Da steht also quasi "1+2+3+4+5+6+7+......=-1/12".
Ok, dann meintest du das doch so. Klingt für mich als wäre in dem Beweis ein Fehler. Wolfram Alpha sagt auch, dass das nicht konvergiert. Oder du beziehst dich auf irgendeinen sehr komischen Raum. Für ℕ kann das ja z.B. schon mal nicht stimmen, weil -1/12 kein Element von ℕ ist.

Zu deinem Beweis mit dem Dreieck: Eigentlich nicht. Da du die Geraden ja auseinander ziehst, streben sie unendlich nah an Parallelität. Das heisst, du hast dort einen Grenzprozess gegen unendlich, was aber nicht das selbe ist, wie zwei fertige stehende parallele Geraden.
Hmm nunja, aber was willst du sonst zeigen? Mit Unendlich als Zahl kannst du ja nicht rechnen, wie du selbst schon gesagt hast.

Geändert von Namenloser (17. Jan 2014 um 23:15 Uhr)
  Mit Zitat antworten Zitat
 

Themen-Optionen Thema durchsuchen
Thema durchsuchen:

Erweiterte Suche
Ansicht

Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 19:37 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz