AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Regression / Abstand zu Punkten

Ein Thema von cltom · begonnen am 2. Jan 2014 · letzter Beitrag vom 8. Jan 2014
 
Benutzerbild von jfheins
jfheins

Registriert seit: 10. Jun 2004
Ort: Garching (TUM)
4.579 Beiträge
 
#12

AW: Regression / Abstand zu Punkten

  Alt 4. Jan 2014, 13:55
Das Integral soll nicht null werden, sondern so klein wie möglich, oder?
Zum Glück als Frage, von daher: Nein!

Die Fläche des Integral ist ja vorzeichenbehaftet. Wenn ich das hier richtig interpretiere:
Zitat:
Gesucht also jene Gerade, bei der die Differenz der Summen der gelben und hellblauen Flächen möglichst klein ist.
Dann meinst er den Absolutbetrag der Differenz. Und der wird minimal gleich Null.

Ansonsten dürfte die Differenz gegen minus unendlich gehen - das ist aber keine zufriedenstellenden Lösung.

Oben habe ich jedoch noch einen klitzekleinen Denkfehler gemacht: Nicht die beiden Integrale sollen gleich werden, sondern das Integral der Differenz soll 0 werden!

für y=m*(x-d) + e und y=a*x^2+b*x+c ergibt sich somit: integrate(a*x^2 + (b-m) * x + c + m*d - e) (x, 0, 2) = 0
das ergibt: a*(8/3 - 2*d^2) - 2*(d-1)*(b-m) = 0 für d <> 1.

Alles natürlich ohne Gewähr
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 00:10 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz