jfheins legt zusätzlich noch einen Punkt fest ... vielleicht hast du ja eine andere Beschränkung? Es fehlen also Details.
Ja, das stand hier:
Was ich nicht beachtet/erwähnt hatte, was das Problem etwas vereinfacht: es ist ein Punkt der Geraden bekannt, nämlich ein bestimmter Punkt auf der Parabel (der sich aus einer anderen Bedingung ergibt), dh. man braucht im Grunde nur die Steigung variieren.
Zitat:
Zu ein paar anderen Fragen: die Bedingung, dass die gelben und blauen Flächen gleich sind, würde ich auch so auslegen, dass die Differenz der Integrale nicht Null ist, sondern nur möglichst klein.
Du bist da einfach zu zurückhaltend
Die Forderung "Differenz möglichst klein" führt zunächst einmal zu einer Differenz gegen unendlich. Die Forderung "Betrag der Differenz möglichst klein" führt dann direkt zu dieser Gleichung:
minimiere abs(a*(8/3 - 2*d^2) - 2*(d-1)*(b-m))
Der Inhalt des Betrags für (beispielsweise d=0) ist dann (a*(8/3) + 2*b - 2*m)) und nimmt damit für m in ℝ ebenfalls Werte aus
ganz ℝ an.
Aus dem Zwischenwertsatz folgt damit unmittelbar, dass es einen Wert m gibt, der den Betrag zu 0 werden lässt.
Die Forderung "Betrag minimal" ist also eine Formulierung, die durch "Betrag gleich 0" präzisiert werden kann ohne die Lösungsmenge einzuschränken.
Anschaulich gesprochen: Für eine Gerade mit einer Steigung gegen unendlich wird die Fläche (Parabel-gerade) sehr negativ. Für eine Steigung gegen minus unendlich wird sie sehr positiv. Dazwischen
muss eine Steigung existieren, für die diese Differenz 0 wird.
Das ganze gilt allerdings nur falls der Stützpunkt nicht in der Mitte des Intervalls ligt. Denn dann hängt die Fläche der Gerade nicht mehr von der Steigung ab. Das führt auch zu einem neuen, interessanten Kriterium: Das Integral über das Quadrat der Differenz soll minimal werden. (Da alle Untersummen positiv sind, kann es nicht 0 werden.)
In diesem Fall kann man Integration und Differenz aber nicht mehr vertauschen.