AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Unendlich <> Unendlich!

Ein Thema von Aphton · begonnen am 7. Nov 2010 · letzter Beitrag vom 9. Nov 2010
 
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#36

AW: Unendlich <> Unendlich!

  Alt 9. Nov 2010, 16:02
Ok, bevor wir weitermachen, kläre ich jetzt einfach nur mal folgende Frage: Bildet (R#\{-∞,∞}, +, *) einen Körper? Oder anders ausgedrückt: Wie sind + und * auf R# definiert? Diese Frage zielt insb. auf die Definition von * und + auf Elemente in R#\{-∞,∞} ab.
Deine Frage ist ziemlich sinnlos, weil die Menge R#\{-∞,∞} naürlich R ist und mit den auf R unveränderten Operation + und * einen Körper bildet. Aber ich werde nicht weiter an dieser Diskussion teilnehmen, weil offensichtlich kein Interesse an dem -gar nicht von mir angestoßenen- Thema besteht, wir schon ziemlich vom Originalbeitrag abgedriftet sind, und mit ziemlich unsinnigen Argumenten hantiert wird: zB ist es mM irrelevant, daß (jfheins) 1+x > x für alle x aus R gilt, aber nicht für alle x aus R#. Das gleiche trifft auch auf C zu, ohne daß das die komplexen Zahlen irgendwie abqualifiziert (und interessanterweise gilt 1+x=x ebenso für manche endliche IEEE-Zahlen, und 1+x>x gilt schon deshalb für die meisten anderen geläufigen Körper nicht, weil es dort gar kein < gibt.).
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 10:44 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz