AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Unendlich <> Unendlich!

Ein Thema von Aphton · begonnen am 7. Nov 2010 · letzter Beitrag vom 9. Nov 2010
Antwort Antwort
Benutzerbild von JasonDX
JasonDX
(CodeLib-Manager)

Registriert seit: 5. Aug 2004
Ort: München
1.062 Beiträge
 
#1

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 17:31
Damit müssen (R#, *) und (R#, +) abelsche Gruppen sein. Wie lauten denn dann die inversen Element von ∞ bzgl. * und +?
Ist mir neu, daß (R,*) eine abelsche Gruppe ist. Wie lautet denn das (multiplikative) Inverse von 0?
Richtig, mein Fehler. (R\{0},*) ist eine abelsche Gruppe, 0 ist das absorbierende Element in R. Man könnte jetzt weitergehen und sagen, dass dann ∞ entsprechend das absorbierende Element in R#\{0} ist und die Gruppe als (R\{0,∞},*) beschreiben, womits aber schön kompliziert wird. Gut, lassen wir uns davon nicht abhalten, zurück zur Addition und (R#,+): Was ist das inverse Element von ∞?
Weitere Frage: gilt a <= ∞ für alle a in R#?

greetz
Mike
Mike
Passion is no replacement for reason

Geändert von JasonDX ( 8. Nov 2010 um 18:20 Uhr)
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#2

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 21:43
Weitere Frage: gilt a <= ∞ für alle a in R#?
Ja, siehe unten. Trotzdem wird die Diskussion doch langsam langweilig. Ich fasse zusammen: In R und R# sind eine Operationen nicht definiert. Man kann widerspruchsfrei mit +-INF rechnen. Die Regeln sind u.a. folgende: Für alle x aus R, alle y>0 aus R gilt
Code:
 -INF < x < INF
 x + INF = INF
 x - INF = -INF
 y/0 = INF
 (-y)/0 = -INF
 y/INF = 0
 y*INF = INF
 y*(-INF) = -INF
 (-y)*INF = -INF
 (-y)*-INF) = INF
 INF*INF = INF, (-INF)*INF = -INF usw.
 INF+INF = INF, -INF - INF = -INF
Außerdem sind * und + (falls alle auftretende Terme definiert sind) kommutativ, assoziativ. Es gilt das Distributivgesetz a*(b+c) = a*b + a*c.

a <= INF gilt für alle a aus R#, weil x < INF, -INF < INF und INF = INF.
  Mit Zitat antworten Zitat
Namenloser

Registriert seit: 7. Jun 2006
Ort: Karlsruhe
3.724 Beiträge
 
FreePascal / Lazarus
 
#3

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 22:35
Was ist (-∞)^∞?
  Mit Zitat antworten Zitat
Benutzerbild von BUG
BUG

Registriert seit: 4. Dez 2003
Ort: Cottbus
2.094 Beiträge
 
#4

AW: Unendlich <> Unendlich!

  Alt 9. Nov 2010, 00:07
Was ist (-∞)^∞?
Nicht definiert?

Wenn gammatester behauptet, das die genannten Regeln widerspruchsfrei sind, kann man das prüfen (bzw. beweisen/widerlegen), ABER man kann dafür nicht einfach einfach auf das zurückgreifen, was wir über R wissen.

Bis jetzt hat noch niemand gefordert (ist vielleicht auch nicht zu empfehlen ), dass (R#,+,*) ein Körper oder Ring sein soll, noch dafür irgendwelche anderen tolle Regeln gelten sollen (zB. a^b mit a, b € R# ist definiert als ...).
Intellekt ist das Verstehen von Wissen. Verstehen ist der wahre Pfad zu Einsicht. Einsicht ist der Schlüssel zu allem.
  Mit Zitat antworten Zitat
mkinzler
(Moderator)

Registriert seit: 9. Dez 2005
Ort: Heilbronn
39.874 Beiträge
 
Delphi 11 Alexandria
 
#5

AW: Unendlich <> Unendlich!

  Alt 9. Nov 2010, 05:36
Wenn R für rationale Zahlen steht, dann handelt es sich ja um einen vollständig geordneten Körper
Markus Kinzler
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#6

AW: Unendlich <> Unendlich!

  Alt 9. Nov 2010, 08:13
Was ist (-∞)^∞?
Nicht definiert?

Wenn gammatester behauptet, das die genannten Regeln widerspruchsfrei sind, kann man das prüfen (bzw. beweisen/widerlegen), ABER man kann dafür nicht einfach einfach auf das zurückgreifen, was wir über R wissen.
Es ist ja nicht so, daß ich das als einiziger behaupte, vgl ua den genannten Wiki-Arikel. Man wird halt in eine Diskussion reingezogen.

Als Pascal/Delphi-Programmierer haben wird ja auch fast ein komplettes Modell mit FPU und IEEE-Arithmetik, mit einigen Einschränkungen (nur endlich viele Zahlen, Addition nicht assoziativ für manche Ausdrücke etc).
Wenn R für rationale Zahlen steht, dann handelt es sich ja um einen vollständig geordneten Körper
Nein, R wurde oben als Körper der reellen Zahlen benutzt, ich habe R# als R+{∞,-∞} zur Unterscheidung verwendet, Wiki schreibt zB R mit Querstrich.
  Mit Zitat antworten Zitat
Benutzerbild von JasonDX
JasonDX
(CodeLib-Manager)

Registriert seit: 5. Aug 2004
Ort: München
1.062 Beiträge
 
#7

AW: Unendlich <> Unendlich!

  Alt 9. Nov 2010, 09:41
Trotzdem wird die Diskussion doch langsam langweilig. Ich fasse zusammen: In R und R# sind eine Operationen nicht definiert. Man kann widerspruchsfrei mit +-INF rechnen.
Ja, es ist langsam langweilig (insb., da wir inzwischen mehr Ausnahmen als Operationen haben), und es tut mir leid, ich machs nicht interessanter. Wenn du von Systemerweiterung sprichst, bedeutet das dass die neuen Regeln mit den bisherigen den Axiomensystemen, die (R, +, *) beschreiben, nicht im Widerspruch stehen dürfen. Nehmen wir bspw. Tarski's zweites Axiomensystem zur Beschreibung von (R, +, *), nachzulesen in "Introduction to Logic and to the Methodology of Deductive Sciences", Seite 217, dort steht bspw. als 8. Axiom:
∀x∀y∃z . x = y + z
Du willst nun ein Axiom hinzufügen, sodass
∀y . !(y = -∞) -> ∞ = y + ∞
Dies liegt eindeutig im Widerspruch zu Tarskis Axiom.
Wir wählen x = 1, y = ∞ [1]
folgich:
∃z . 1 = ∞ + z
Gezwungenermaßen muss ein entsprechendes z existieren. Wir unterscheiden 2 Möglichhkeiten:
z ist eine reelle Zahl. Damit kommen wir aber auf
1 = ∞ + z = ∞
was offensichtlich ein Widerspruch ist, oder aber
z = -∞
was in einer "ungültigen Operation" resultiert, womit es kein z gibt das das 8. Axiom erfüllt.
Aufrund LEM gilt somit: dein Axiomensystem ist bewiesenermaßen inkonsistent.

[1] Es funktioniert für alle x wenn !(x = ∞)

Es ist ja nicht so, daß ich das als einiziger behaupte, vgl ua den genannten Wiki-Arikel. Man wird halt in eine Diskussion reingezogen.
Mag sein, aber wenn man Behauptungen vertritt, muss man sie auch verteidigen können. Zudem würde ich mich nicht so sehr auf die Korrektheit verlassen, insb. bei solchen Artikeln. Fachbücher sind eine deutlich bessere Referenz.

Nein, R wurde oben als Körper der reellen Zahlen benutzt, ich habe R# als R+{∞,-∞} zur Unterscheidung verwendet, Wiki schreibt zB R mit Querstrich.
Mengen erweitern kann man immer, das ist aber auch sehr langweilig. R + { Gugelhupf, Linzertorte } ist absolut gültig, aber nur von geringer Bedeutung.
Wenn man aber anfängt, Operationen darauf zu beschreiben, erweitert man nicht die Mengen, sondern die Tupel aus Mengen und Operatoren. Wenn man dann bspw. der Menge ein Element hinzufügt, muss der Operator entsprechend erweitert werden. Dies darf aber nicht zu einem Widerspruch führen.
Wenn nun R erweitert wird, und mit + und * gerechnet wird, wird also mit einem Tupel (R, +, *) gearbeitet. Entweder es ist nicht der Körper der reellen Zahlen gemeint, womit der gesamte Absatz im Artikel sinnbefreit wäre, da man zwar die Operatoren für manche Elemente beschreibt, aber nicht für alle, oder man beruht sich tatsächlich auf den Körper der reellen Zahlen, was aber zu einem Widerspruch führt, wie oben gezeigt.

greetz
Mike
Mike
Passion is no replacement for reason
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#8

AW: Unendlich <> Unendlich!

  Alt 9. Nov 2010, 11:03
Ja, es ist langsam langweilig (insb., da wir inzwischen mehr Ausnahmen als Operationen haben), und es tut mir leid, ich machs nicht interessanter.
Ja leider, außerdem gibt's pro primärer Operation nur ein Ausnahme: x + (-x) für Addition und 0*x für Multiplikation mit x = +-∞. Falls Du noch die Division betrachten willst auch noch +-∞/+-∞, aber dafür kann man die unendlichvielen Ausnahmen r/0 beseitigen.
Wenn nun R erweitert wird, und mit + und * gerechnet wird, wird also mit einem Tupel (R, +, *) gearbeitet.
Nein, mit (R#,+,*).
Entweder es ist nicht der Körper der reellen Zahlen gemeint, womit der gesamte Absatz im Artikel sinnbefreit wäre, da man zwar die Operatoren für manche Elemente beschreibt, aber nicht für alle,
Du scheinst keinen Sinn zu sehen, andere wohl schon. Zumindest soviel Sinn, daß es sogar modelhaft hardwaremäßig implementiert wird.
oder man beruht sich tatsächlich auf den Körper der reellen Zahlen, was aber zu einem Widerspruch führt, wie oben gezeigt.
Ich sehe keinen Widerspruch, da sich Deine Argumenation auf eine andere Struktur bezieht, denn niemand will beweisen oder axiomatisch fordern, daß ∞ eine relle Zahl ist. (So wie niemand behauptet, daß es eine reelle Zahl gibt, deren Quadrat < 0 ist. Und trotzdem finden es einige sinnvoll mit solchen Zahlen zu arbeiten.)
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 10:45 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz