AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Unendlich <> Unendlich!

Ein Thema von Aphton · begonnen am 7. Nov 2010 · letzter Beitrag vom 9. Nov 2010
Antwort Antwort
Seite 2 von 3     12 3      
Benutzerbild von Mithrandir
Mithrandir
(CodeLib-Manager)

Registriert seit: 27. Nov 2008
Ort: Delmenhorst
2.379 Beiträge
 
#1

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 16:44
Verdammt!
米斯蘭迪爾
"In einer Zeit universellen Betruges wird das Aussprechen der Wahrheit zu einem revolutionären Akt." -- 1984, George Orwell
  Mit Zitat antworten Zitat
Benutzerbild von jfheins
jfheins

Registriert seit: 10. Jun 2004
Ort: Garching (TUM)
4.579 Beiträge
 
#2

AW: Unendlich <> Unendlich!

  Alt 7. Nov 2010, 18:32
Hallo liebe Delphi Gemenischaft.
Ich habe mir vor kurzem "BBC - Dangerous Knowledge" angesehen, in der ein Paradoxon beschrieben wird, der Mathematiker in den Wahnsinn getrieben hat:

Nun die konkrete, für mich schwer formulierbare Frage: Heißt das, dass es mehrere Ebenen von der Unendlichkeit gibt bzw. die "Zahl" Unendlich nicht direkt unendlich ist, sondern von bestimmten Faktoren (beispielsweise Radius & Flächeninhalt vom Kreis) abhängig ist?

Was sind eure Gedanken dazu?
MfG
Mein Gedanke: Du kannst den Kreis nicht mit Linien ausfüllen. linien sind 1 dimensional, die Fläche ist 2 dimensional. Es wird immer Lücken geben! Und (jetzt wirds cool ^^) diese Lücken kann man sogar bestimmen und wenn man alle zusammenzählt kommt man auf die Fläche des Kreises! (schließlich ist die Linie 1D und zwackt keine Fläche ab)

Es gibt übrigens noch einen Denkfehler: Die angesprochene Integration geht (aus gutem Grund) nicht von Linien aus, sondern von Kreissegmenten. Wenn man nämlich die Fläche eines Kreises bestimmen wollte mit einem Integral muss man schreiben:

int 1*r dr dphi, r=0..1, phi=0..2Pi

Man beachte das r ganz innen. Das ergibt sich aus dem Übergang zu Polarkoordinaten.
  Mit Zitat antworten Zitat
Benutzerbild von JasonDX
JasonDX
(CodeLib-Manager)

Registriert seit: 5. Aug 2004
Ort: München
1.062 Beiträge
 
#3

AW: Unendlich <> Unendlich!

  Alt 7. Nov 2010, 18:51
Nun die konkrete, für mich schwer formulierbare Frage: Heißt das, dass es mehrere Ebenen von der Unendlichkeit gibt bzw. die "Zahl" Unendlich nicht direkt unendlich ist, sondern von bestimmten Faktoren (beispielsweise Radius & Flächeninhalt vom Kreis) abhängig ist?
Im Prinzip ist das eine generelle Fragestellung der Kontinuitätshypothese. Diese behauptet folgendes:
Es gibt eine Menge P, sodass |N| < |P| < |R|, wobei |K| die Mächtigkeit der Menge K beschreibt.

Wir wissen lediglich, dass |N| = |Z| = |Q| < |R| (Cantors Diagonalisierungsargument), sowie dass - in den wichtigsten Axiomensystemen, nämlich PA und ZFC - diese Aussage weder beweisbar, noch widerlegbar ist (Bewiesen von Kurt Gödel und Paul Cohen).
Die Frage ist eines der berühmtesten Beispiele für unentscheidbare Sätze, deren Existenz (unter hoffentich wahren Umständen) von Gödel in seinem 1. Unvollständigkeitssatz bewiesen wurde. Dieser hatte auch vorgeschlagen, ZFC durch Axiome, welche Kardinalzahlen aufgreifen, zu erweitern. Damit könnte CH bzw. GCH, und somit auch deine Frage entschieden werden.

Folglich: Wir kennen bisher 2 Varianten von "unendlich": Abzählbar unendlich (|N|), und überabzählbar unendlich (|R|). Obs mehr davon gibt oder nicht, ist mit den bisherigen Regeln der Mathematik nicht zu beantworten.

greetz
Mike
Mike
Passion is no replacement for reason

Geändert von JasonDX ( 7. Nov 2010 um 23:23 Uhr)
  Mit Zitat antworten Zitat
Win32.API

Registriert seit: 23. Mai 2005
312 Beiträge
 
#4

AW: Unendlich <> Unendlich!

  Alt 7. Nov 2010, 19:07
Unendlich ist keine Zahl, es ist eine Beschreibung.

2*∞ = ∞ + ∞ = ∞
2*∞ = ∞
2 = 1 !
  Mit Zitat antworten Zitat
Medium

Registriert seit: 23. Jan 2008
3.688 Beiträge
 
Delphi 2007 Enterprise
 
#5

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 03:49
Diese Schreibweise ist extrem gefährlich!

∞ = ∞ muss man prinzipiell immer verneinen, wenn nicht bekannt ist WIE die Unendlichkeit zustande kam! ∞-∞ ist auch nicht zwangsweise =0, so wie auch ∞/∞ nicht zwangsweise =1 ist.
(FPUs liefern beim Vergleich zweier "Unendlich" typischerweise auch "false".)

Wie im Posting von JasonDX schon ganz gut erkennbar ist, ist es kompliziert dafür eine Anschauliche Metapher zu finden - das liegt aber darin begründet, dass der Mensch grundsätzlich nicht dazu in der Lage ist sich ein Verständnis von "Unendlichkeit" anzueigenen. (Sehr sehr SEHR viel/groß/weit taugt einfach nicht ) Dieses Konzept übersteigt unseren Horizont was die Bildlichkeit angeht, aber dennoch ist man in der Lage den Begriff in Regeln und Gesetzmäßigkeiten zu fassen.
Aber jeglicher Versuch einer anschaulichen Darstellung ist zum Scheitern verurteilt. Hilberts Hotel ist da schon extrem gut gelungen.
"When one person suffers from a delusion, it is called insanity. When a million people suffer from a delusion, it is called religion." (Richard Dawkins)
  Mit Zitat antworten Zitat
alzaimar
(Moderator)

Registriert seit: 6. Mai 2005
Ort: Berlin
4.956 Beiträge
 
Delphi 2007 Enterprise
 
#6

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 06:56
Unendlich ist für mich z.B., auf einer Kugel spazieren zu gehen, bis man nicht mehr weiter kommt.

Die Kugel ist greifbar, das Unendliche ihrer Oberfläche (im o.g. Kontext) für mich zumindest auch BE-greifbar.

Wenn ich das mit den Linien auf meine Kugel anwende, dann nehme ich mir also eine Kugel, stell mich drauf, packe mir einen Stift in den A*** und laufe los. Der Stift zeichnet eine unendlich dünne Linie auf die Kugel und wenn ich die Kugel ausgemalt habe, dann bin ich fertig. (Allein das dauert schon, wegen der Unendlichkeit, ein Weilchen).

Nun puste ich die Kugel auf. Sind Lücken vorhanden? Nö.

Wieso soll man sich daran den Kopf zerbrechen? Schließlich habe ich eine unendlich lange Linie gezeichnet.

Der Fehler bei dem Paradoxon ist übrigens in meinen Augen der, das man annimmt, das man abzählbar unendlich viele Linien in so einem Kreis hat.
Das stimmt natürlich nicht, man hat unabzählbar viele Linien.

Da kann ich mir dann ein Segment ausschneiden und dehnen, es bleiben unendlich viele Linien. Und unendlich viele Linien sind ja nach Definition des Gedankenexperimentes flächenfüllend.

Wo ist also das Problem?
"Wenn ist das Nunstruck git und Slotermeyer? Ja! Beiherhund das Oder die Flipperwaldt gersput!"
(Monty Python "Joke Warefare")
  Mit Zitat antworten Zitat
Benutzerbild von Ralf Kaiser
Ralf Kaiser

Registriert seit: 21. Mär 2005
Ort: Wuppertal
932 Beiträge
 
Delphi 10.3 Rio
 
#7

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 11:44
Unendlich ist für mich z.B., auf einer Kugel spazieren zu gehen, bis man nicht mehr weiter kommt.

Die Kugel ist greifbar, das Unendliche ihrer Oberfläche (im o.g. Kontext) für mich zumindest auch BE-greifbar.
Die Oberfläche einer Kugel ist nicht unendlich! Sie ist unbegrenzt aber endlich!
Ralf Kaiser
  Mit Zitat antworten Zitat
Benutzerbild von JasonDX
JasonDX
(CodeLib-Manager)

Registriert seit: 5. Aug 2004
Ort: München
1.062 Beiträge
 
#8

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 09:47
∞ ist prinzipiell kein Element einer Zahlenmenge. Addition, Multiplikation, inverse und neutrale Elemente lassen sich auf ∞ nicht anwenden, da ∞ nunmal nicht Element einer entsprechenden Menge ist. Genau deshalb wurde auch das Konzept der Kardinalzahlen eingeführt. Diese erlauben - mit signifikanten Unterschieden zu den uns üblichen Zahlen - ein Rechnen mit "Unendlichkeiten".
Das Problem jetzt hier bei der Dokumentation und dem eingeführten Beispiel liegt IMO dabei, dass etwas mathematisches zu sehr vereinfacht wird:
Code:
Man nehme ein Kreis, fülle es mit unendlich vielen, unendlich dünnen Linien startend beim Zentrum mit der Länge vom Radius. Folglich kann man sehen, dass es keine Lücke zwischen zwei beliebigen aufeinanderfolgenden Linien gibt.
Wenn die Linien am Radius r dicht aneinanderliegen - wie siehts dann bei r/2 aus? Liegen die Linien dann dort aufeinander?
Betrachten wir 2 Linien. Es lässt sich leicht zeigen: Wenn die 2 Linien nicht gleich sind, so gibt es unendlich viele Linien dazwischen. Folglich: 2 Linien sind entweder gleich, oder nicht benachbart (d.h. es gibt noch min. 1 Linie dazwischen). Wenn man nun die Linien verlängert, zwischen welchen Linien will man einen Abstand bemerken? Wenn die Linien gleich sind, gibt es keinen Abstand. Vergleicht man 2 unterschiedliche Linien, so sind sie nicht benachbart, d.h. man kann auch nicht sagen dass die Linien nicht dicht aneinanderliegen - denn dafür müsste eine Lücke zwischen zwei benachbarten Linien existieren.

Btw: Die Doku ist zwar sehr interessant gemacht, aber ich würde mich auf die Korrektheit des wissenschaftlichen Inhalts nicht verlassen. (Auch nicht in den späteren Teilen )

greetz
Mike
Mike
Passion is no replacement for reason
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#9

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 12:06
∞ ist prinzipiell kein Element einer Zahlenmenge. Addition, Multiplikation, inverse und neutrale Elemente lassen sich auf ∞ nicht anwenden, da ∞ nunmal nicht Element einer entsprechenden Menge ist.
Erstens ist das doch wohl eine zirkuläre Argumentation, und selbst wenn man dies bereinigt, läuft es offensichtlich auf die altbekannten Rückzugsgefechte heraus, die immer dann ausgefochten werden, wenn's um Bereichserweiterungen geht:

1/2 ist keine Zahl, -1 ist keine Zahl, i=sqrt(-1) ist keine Zahl, ∞ ist keine Zahl usw. Auch hier sind manche Operation in der alten, nicht erweiterten Menge nicht möglich.

Selbst unsere FPUs kennen unendlich (geanuer sogar zwei mit Vorzeichen) und können damit rechnen, zB 1/0 = ∞, (-1/0) = ∞ etc. Und anders als
(FPUs liefern beim Vergleich zweier "Unendlich" typischerweise auch "false".)
behauptet liefern sie auch das richtige Ergebnis: ∞=∞ und (-∞)=(-∞) (vielleicht er aber auch ∞ mit -∞ verglichen).
  Mit Zitat antworten Zitat
Benutzerbild von jfheins
jfheins

Registriert seit: 10. Jun 2004
Ort: Garching (TUM)
4.579 Beiträge
 
#10

AW: Unendlich <> Unendlich!

  Alt 8. Nov 2010, 12:33
∞ ist prinzipiell kein Element einer Zahlenmenge. Addition, Multiplikation, inverse und neutrale Elemente lassen sich auf ∞ nicht anwenden, da ∞ nunmal nicht Element einer entsprechenden Menge ist.
Erstens ist das doch wohl eine zirkuläre Argumentation, und selbst wenn man dies bereinigt, läuft es offensichtlich auf die altbekannten Rückzugsgefechte heraus, die immer dann ausgefochten werden, wenn's um Bereichserweiterungen geht:

1/2 ist keine Zahl, -1 ist keine Zahl, i=sqrt(-1) ist keine Zahl, ∞ ist keine Zahl usw. Auch hier sind manche Operation in der alten, nicht erweiterten Menge nicht möglich.
Der Unterschied ist: N lässt sich zu Q (und im weiteren auch zu R und I) erweitern, ohne Widersprüche zu erzeugen. Eine Erweiterung auf ∞ würde aber Widersprüche erzeugen und kann deshalb nicht durchgeführt werden!

Auch ein "Integral von -∞ bis +∞ f(x) dx" meint eigentlich: "Limes z->∞ von Integral von -z bis +z f(x) dx"

Geändert von jfheins ( 8. Nov 2010 um 12:35 Uhr)
  Mit Zitat antworten Zitat
Antwort Antwort
Seite 2 von 3     12 3      


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 19:12 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz