Einzelnen Beitrag anzeigen

Michael II

Registriert seit: 1. Dez 2012
Ort: CH BE Eriswil
760 Beiträge
 
Delphi 11 Alexandria
 
#5

AW: Erstellung einer Schleife mit drei Überprüfungen

  Alt 23. Mai 2021, 10:54
Fibonacci.

Da machst du diverse Fehler.

Du willst für die Berechnung offenbar Moivre-Binet (MB) verwenden. Mit MB kannst du die n-te Fibonacci Zahl ermitteln.
D.h. du musst bei deiner Überprüfung von "zahl" ein n finden, für welches f(n) = zahl gilt. Dann ist "zahl" Fibonacci Zahl.

Du verwendest in deiner Formel Power(a,b), was a^b entspricht. Schau dir noch einmal die Formel von MB an, dann siehst du, dass du in deinem Programm bei Power(a,b) Basis und Exponent vertauscht hast.

Näherung: Der zweite Power Therm in MB ist bereits für kleine n klein und (da ¦Basis¦ < 1) konvergent lim(n->unendlich) = 0. Du kannst auf den zweiten Therm verzichten und rechnen:

Delphi-Quellcode:
    sqrt5 := sqrt(5);
    fib := trunc( 1/sqrt5 * Power((1+sqrt5)/2,n) + 0.5 );
Noch einmal: Du musst (Code oben) nach einem n suchen, für welches fib=zahl.

Du suchst: Gegeben eine Zahl zahl. Gesucht: Gibt es ein n für welches gilt fib(n)=zahl. zahl := trunc( 1/sqrt5 * Power((1+sqrt5)/2,n) + 0.5 ) kannst du auflösen nach n: (zahl-0.5)*sqrt5=((1+sqrt5)/2)^n. => n = log(zahl-0.5)/log((1+sqrt5)/2).
Für grössere Werte von Zahl kannst du das 0.5 auch weglassen (dies ist ja die Abschätzung für ((1-sqrt)/2)^n in MB und dieser Funktion konvergiert gegen 0).
Bleibt zu prüfen, ob der gefundene Wert n (ist eine real Zahl) effektiv Index einer Fibonacci Zahl ist.

(Mit einem ε machst du mathematisch nix falsch, in einem Programm musst du aber i.A. im Auge behalten, wie beim von dir verwendeten Zahlentyp Werte abgespeichert werden. Die "reelle Zahlenwelt" im Computer weist mehr Löcher als Werte (nur endlich viele voneinander verschiedene Werte speicherbar, jedoch R überabzählbar) auf: Du findest zu einem abgespeicherten real Wert x locker ein ε für welches im (mathematischen) Intervall [x-ε,x+ε] alle Werte als x gespeichert werden.)

Nebenbei und für Uni (1. Jahr, Lineare Algebra, Differentialgleichungen) interessant: Du kannst für Folgen vom Typ a[n+1] = f*a[n] + g*a[n-1], Startwerte a[0], a[1] gegeben
eine Formel (wie jene von MB für Fibo) für a[n] berechnen. Wenn du dir die Herleitung von MB anschaust, dann siehst du sofort wie das geht. (Du betrachtest im R^2 die lineare Abbildung (a[n],a[n-1]) = A(a[n-1],a[n-2]) => (a[n+k],a[n+k-1]) = A^(k)(a[n],a[n-1]), Du suchst für A die Eigenvektoren und kannst so leicht A^(k) berechnen. Fertig.)
Michael Gasser

Geändert von Michael II (23. Mai 2021 um 15:59 Uhr)
  Mit Zitat antworten Zitat