Das Angebot der "Chaotic Bank Society":
Sie zahlen zunächst e - 1 $ auf Ihr Konto ein, wobei e = 2. 7182818… ist die Basis der natürlichen Logarithmen. Im ersten Jahr nehmen wir 1 $ von Ihrem Konto als Bearbeitungsgebühren. Das zweite Jahr ist besser für Sie: Wir multiplizieren Ihr Kapital mit 2, und wir nehmen 1 $ Bearbeitungsgebühren von Ihrem Konto. Das dritte Jahr ist sogar noch besser: Wir vervielfachen Ihr Kapital durch 3, und wir nehmen immer nur noch 1 $ an Bearbeitungsgebühren. Und so weiter: Im n-ten Jahr wird Ihr Kapital mit n multipliziert, und wir nehmen nur 1 Dollar Gebühren. Interessant, nicht wahr?
Wie hoch wäre Ihr Kapital nach 25 Jahren?
Exakte Lösung: 25!e-sum(i=1;25;25!/i!)=15511210043330985984000000 e - 26652630354867072870693626
Numerische Lösungen:
Currency läuft bei der Berechnung für das 18. Jahr über.
1,5511210043330986E25 Delphi Extended
1,55112100433309861E25 Delphi Double
1,55112100433655498E25 Delphi Real48
1,55112076204817268E25 Delphi Single
1.551121004333098598400000003993872967323020890367 14552103610609810902462093999452735830887464108224 05958563231326504588526568754471550871321071511028 65877113031301246014269485947628156339035631478711 56972992927463959295378944403635902120260128114229 22313584223061180730596742377705289915144746694475 71765160508839459336338872383753196167221729140084 08174885201783691426388619978768865531323118535402 96935132579638126446952478348226578947288519178106 17781233401594055691040321590882201736459569823189 83576440408501342622021037730943274224144511437305 07152135683657708095677651120107759880605933613348 87623261771817480734410462774503249855758903025858 69911940277896932577548947296379441152499806651387 03945047390025867346621461272142961349666226182108 72695781997452163483694977937913381018485218277696 61754835986000967476233623861761063114702374959896 83244412722845433289358770989410202014274865145376 89535607054925229658200499120673138102661633964476 23628162987616065094362331757119278048209290555851 58236935322280549346093132963461058740654005374192 47677708355911819747675693712901378560713651778669 97931702493494721257361195123847186012238814637677 12722473351719813105096004887329666997611226438824 31479723969411331531960466717554616891283716351868 13994710337926333417096117724340263241126891726855 88792815973341240411885154432701216689096314639830 09978990008722755195406595058471067994822268098769 63303747291358036140174827459667579289634528150803 68253091530679796464656985926303187771471523090861 36065061715164522738784611354074952513726360974946 56039646541458858796075909681192962495110133421155 44819985771722994490313918182408598176122453110625 74591169349402523418996815901688696723377571156091 70072292208685849130844754758257019940278213507914 98166946886825456038719192553043078845960587978370 03347244591119333590346079381954256694073107837219 33247781048120121896075526893236023455770809887225 34810420772451347935461156084362437017435480228239 22559760804442565816753931503823148559605618238340 34744874760918148873772361146935820729137193550727 78518215627135770680812276472172702654725610074861 66588214391218906867367130029323735726017595848330 52442292727671467414360149211485363973833778677970 28508409906494296792769856861898977448447438021512 40224683859908687373538562542464740954057544917750 30797039732844954737644542762735245237821769200312 23083815968813598249665040371444008754885242844956 10815714710103809452472855113169849371253705634007 77569455614975853827444786365708317189821517395860 89568336769347793424220928780305804313696004710640 60120578457459017962608987107680998265372166730171 71552663089995959634861333788237138558214346778984 51463891214543327001686282548111614109449236925218 48770289602488971694917432865092216438082263294017 94514026323322533973103973760576676535163204324726 58430380533664963359848416627509384813851591111228 40097985233174471899577097597994574401395209375595 20279627770633530918788298081281794400221601973756 92787364229556555705724015912072278296173349441915 11570874137950251130442286114860282770673985838722 45727245695100078688147484750204795338668818271535 24614441317803722355359830604654842877184349597238 60273376226934553216173687765193470643343951239086 27784196075087827104944773669868914461184642437721 09432767417654171846730641402959136954307980191949 80295033188124985726393161784018920609632198659814 06100968138174080569252616515193753342340853705790 16941950615567101585464690380642434483220667815415 67830211036156076664570959191257605113039930671400 38505463543226353476234794904639287798040991945474 50131428588001563989984646910763702908587333364442 95562891565772491614838243280456415431605340E25 Eine recht genaue Darstellung
Bin enttäuscht, hatte größere Unterschiede erwartet.