Es darf schon konvex sein, so lange die Tangenten, bzw. alle Geraden (Flächen) durch benachbarte Punkte, den Mittelpunkt nicht einschließen.
Gut, voherer müsste man so oder so erstmal die Außenfläche in Dreiecke zerlegen. (falls das nicht schon gegeben ist)
Dann einfach erstmal ganz einfach versuchen.
* den Schwerpunkt zu berechnen und als Mittelpunkt zu nehmen geht nicht, da man dafür erstmal das Volumen braucht, um darüber die Gewichtsverteilung zu bestimmen und gerade das Volumen wird ja erstmal gesucht.
* ganz billig den Mittelpunkt als Durchschnitt/Mittelwert jeweils der X-, Y- und Z-Koordinaten aller Punkte nehmen.
Dann von allen Punkten/Dreiecken zum Mittelpunkt die Tetraeder bestimmen und schauen ob da jeweils die Spitze auf der Innenseite liegt
> die Dreiecke als Fläche ansehen und der "Mittelpunkt" muß immer "innen" liegen (alle Tetraeder verlaufen zum Mittelpunkt und nichts überschneidet sich)
Passt das nicht, dann nochmal alles mit allen Punkten der Außenfläche als "Mittelpunkt" versuchen.
Hat es mit irgendeinem "Mittelpunkt" geklappt, können die Volumina der Tetraeder zusammengerechnet werden und fertig.
Tja, wurde nichts gefunden, weil z.B. irgendwo was zu sehr konvex ist, dann wird es spaßig und du mußt das ganze Gebilde erstmal unterteilen, so lange/oft, bis sich für alle Bruchstücken der Inhalt berechnen lässt.