AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Code-Bibliothek Neuen Beitrag zur Code-Library hinzufügen Delphi [Tutorial] Quadratische Gleichungen vollständig lösen
Thema durchsuchen
Ansicht
Themen-Optionen

[Tutorial] Quadratische Gleichungen vollständig lösen

Ein Thema von Wolfgang Mix · begonnen am 24. Jul 2009 · letzter Beitrag vom 10. Apr 2010
 
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#11

Re: Quadratische Gleichungen vollständig lösen

  Alt 28. Jan 2010, 21:42
Erster Fehlerbericht: Bug zB für: a=1 b=0 c=1. Mit der beigepackten EEX: -> Meldung "p is a very small nummber" dann "ungültige Gleitkomma-Op", in der D6-IDE x1=NAN x2=NAN.

Die "kleines p"-Logik ist noch ziemlich daneben, denn nach Ausgabe "p is a very small nummber" wird sqrt(0-1) berechnet -> Crash. Erste Abhilfe für den Fall oben: Ersetze if (p>=0) and (p<sqrt(Math.MinDouble)) then durch if (p>0) and (p<sqrt(Math.MinDouble)) then

Ich sehe nicht, warum überhaupt soviel Aufhebes für "kleines p" gemacht wird. Kritisch sind hier eigentlich "nur" die Diskriminantenberechnung (und Overunder/flow). Ein Kriterium, wann die Diskriminante mit erhöhter Genauigkeit berechnet werden muß, findet man zB bei W.Kahan, On the Cost of Floating-Point Computation Without Extra-Precise Arithmetic http://www.eecs.berkeley.edu/~wkahan/Qdrtcs.pdf.

Gammatester
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 04:22 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz