AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Sonstige Fragen zu Delphi Delphi RSA: wie komme ich vom ggt zur vielfachsummendarstellung?
Thema durchsuchen
Ansicht
Themen-Optionen

RSA: wie komme ich vom ggt zur vielfachsummendarstellung?

Ein Thema von qwertz543221 · begonnen am 6. Jul 2009 · letzter Beitrag vom 8. Jul 2009
Antwort Antwort
Seite 1 von 2  1 2      
qwertz543221
(Gast)

n/a Beiträge
 
#1

RSA: wie komme ich vom ggt zur vielfachsummendarstellung?

  Alt 6. Jul 2009, 12:41
hallo ich habe folgendes problem

Delphi-Quellcode:
function modinvers(e,n:ansistring):ansistring;
        var de,k:ansistring;
        begin
        k:='1';
        de:='1';
        while mathe.Modulo(de,e)<>'0'  do
        begin
        de:=mathe.produkt(k,phi);
        mathe.Plus1(de);
        mathe.Plus1(k);
        end;
        result:=mathe.Quotient(de,e);
       if mathe.ProduktModulo(result,e,n)<>'1'
          then showmessage('invmod falsch');
        end;

das klappt soweit auch schon, nur - es ist einfach zu lngsam.
Daher hatte ich vor die "echte" berechnungsmethode zu benutzen, bei der habe ich leider einige probleme.

1)wähle p und q als primzahlen
2) n:=pq;
3) phi=(p-1)*(q-1)
4)wähle d mit ed mod phi=1
=> ed+k*phi=1=ggt(e,phi)

und hier hab ich probleme:

den einfachen euklidischen algorithmus kann ich durchführen, nur dann soll das ganze rückwärts wieder zur Vielfachsummendarstellung führen - dies ist der teil, der mir probleme bereitet.

(im moment noch auf dem papier - das coding folgt, sobald ich weiß wie ich vom ggt des einfachen euklidischen algo zur vielfachsummendarstellung komme, um das d zu berechnen. genau das ist mein problem)



beispiel:
p=11, q=13
n=143
phi=120
e=23

ed+k phi=1=ggt(e,phi)

120= 5*23+5
23= 4* 5+3
5= 1* 3+2
3= 1* 2+1
2= 1* 1+1 =>Ergebnis=1
1= 1* 1+0 =>Abbruchbedingung


Nur wie komme ich jetzt zur darstellung des ergebnisses als vielfachsumme, damit ich d ausrechnen kann? - und wie kann man das effizient und schnell (vom algorithmus her) in delphi beschreiben?

Danke für eure tips (ich hoffe ich hab nichts durcheinandergebracht, bisher hab ich das ganze wie oben durch den delphi code angegeben ausgerechnet)
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#2

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 6. Jul 2009, 15:39
Willst Du es diesmal ernsthaft wissen und auf Vorschläge eingehen, oder soll's wieder so laufen wie im Thread Chinesischer Restsatz?

Einen Tip schon mal kostenlos Dein modinvers beschreibt immer noch nicht, was Du eigentlich machen willst. In Deinem neuen Beitrag willst Du modulo phi invertieren, testest aber ob das Produkt = 1 mod n ist!

Zum dritten Mal: Wirf n als Parameter von modinvers raus, und wirf endlich das globale phi raus. Schreibe eine function modinvers(a,b: ansistring): ansistring; mit der Eigenschaft modinvers(a,b)*a = 1 mod b.

Wie Du das machen kannst, ist zB in dem Link zum BUGs Beitrag 2 des Chinesischen Threads beschrieben.

Wenn Du allerdings weiterhin alle Hilfsversuche ignorierst, wird Dir wohl kaum einer mehr helfen wollen.
  Mit Zitat antworten Zitat
qwertz543221
(Gast)

n/a Beiträge
 
#3

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 6. Jul 2009, 16:47
wikipeida schreibt doch:
Zitat:
Wir wählen p und q
Der RSA-Modul ist n:=pq .
Die eulersche φ-Funktion nimmt damit den Wert (p-1) (q-1) an.
Die Zahl e muss zu phi teilerfremd sein. Damit bilden e und N den öffentlichen Schlüssel.
Berechnung der Inversen zu e:
Es gilt:
e*d+k*phi=ggt(e,phi)=1.
d ist der private Schlüssel, während k nicht weiter benötigt wird.
so soll das laufen
und dafür brauch ich die vielfachsummendarstellung, die sich an den euklidischen algorithmus anschließt, nur weiß ich nicht mehr wie das geht - du weißt ja ich hatte es anders probiert, weil ich das hier eben nicht hinbekam.

und was die parameter in der funtion angeht - sollte dem programm doch egal sein wie die im funktionskopf heißen, hauptsache er bekommt die richtigen zum rechnen.


Hm noch was
Zitat:
Willst Du es diesmal ernsthaft wissen und auf Vorschläge eingehen, oder soll's wieder so laufen wie im Thread Chinesischer Restsatz?
ich hab darauf übrigens nie eine antwort erhalten, auch wenn ich jetzt die bisherigen fehler geändert habe, weiß ich immmer noch nicht wie der chin RS richtig funktioniert(sbsegeshen von der imlpementierungh).

Man hatte mir damals gesagt, ich solle mich mit dem erweiterten euklid. algo. beschäftigen
soweit so gut, nur brauch ich den noch nicht zu benutzten, wenn ich nicht mehr weiß wie das mit der eben angesprochenen vielfachsummendarstellung gehen soll.

und genau dafür hatte ich hier um erklärungen gebeten.
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#4

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 6. Jul 2009, 17:02
Zitat von qwertz543221:
die vielfachsummendarstellung, die sich an den euklidischen algorithmus anschließt
Nein, tut sie eben sinnvollerweise nicht. Sie wird zusammen mit dem ggt im Erweiterten Euklidischen Algorithmus berechnet (und nicht mit Deiner Bruteforcemethode: nimm den ggt und probier der Reihe nach alle Möglichkeiten)

Zitat von qwertz543221:
und was die parameter in der funtion angeht - sollte dem programm doch egal sein wie die im funktionskop heißen, hauptsache er bekommt die richtigen zum rechnen.
Richtig, aber in der Funktion sollten auch nur die Parameter aus dem Funktionskopf und keine globalen Variablen verwendet werden.

Dies war wohl mein letzter Beitrag hier, da nicht abzusehen ist, daß die Diskussion zu irgendetwas führt.
  Mit Zitat antworten Zitat
qwertz543221
(Gast)

n/a Beiträge
 
#5

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 7. Jul 2009, 19:11
ok ich hab hier mal ein schriftliches beispiel gerechnet, nur wie kann man das
in einen algorithmus packen? - d.h. wie lasse ich den algorithmus die umformungen bis zur vielfachsummendarstellung machen?
- so wie man es auf papier macht (s.o.) geht das kaum, oder?


Beispiel
p=31,q=97
n=3007
phi=2880
e=23

ed+k*phi=1=ggt(23,2880)

2880=125*23+ 5
23= 4* 5+ 3
5= 1* 3+ 2
3= 1* 2+ 1(**)
1= 1* 1+ 0


(**)
1=2-1*1

1=2-1(3-1*2)=2*2-1*3

1=2(5-1*3)-1(23-4*5)
=2*5 - 2*3 - 1*23 + 4*5
=6*5 - 2*3 - 1*23

1=2(5 - 1*3) - 1*3
=2*5 - 3*3

1=2(2880 - 125*23) - 3(23 - 4*5)
=2*2880 - 250*23 - 3*23 + 12*5
=2*2880 - 253*23 + 12*5

1=2*2880 - 250*23 - 3*23 + 12(2880 - 125*23)

1=14*2880 - 1753*23
1= k*phi + d*e
1=1 ok


da d<0:
d=-1753 + phi (vielfaches von phi)
d=1127


=>e=23,d=1127,n=3007
  Mit Zitat antworten Zitat
Klaus01

Registriert seit: 30. Nov 2005
Ort: München
5.771 Beiträge
 
Delphi 10.4 Sydney
 
#6

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 7. Jul 2009, 19:50
Delphi-Quellcode:
function TRSA.Gcd(n, m: Int64): Int64;
begin
  if m = 0 then
    Result := n
  else
    Result := Gcd(m, n mod m);
end;
Schau Dir zur folgenden Funktion mal diesen Link an - und auch mal durcharbeiten.

Delphi-Quellcode:
function TRSA.extEuclidian(e,phi:Int64;var gcd:Int64):Int64;
var
  u,v,t : Array[1..3] of Int64;
  q : Int64;
  i : Byte;

begin
  u[1] := 1;
  u[2] := 0;
  u[3] := phi;
  v[1] := 0;
  v[2] := 1;
  v[3] := e;
  while v[3] <> 0 do
    begin
      q := u[3] div v[3];
      for i:=1 to 3 do
        begin
          t[i] := u[i] - q * v[i];
        end;
      move(v[1],u[1],3*sizeOf(Int64));
      move(t[1],v[1],3*sizeOf(Int64))
    end;

  result := u[2];
  if u[2] < 0 then
    result := u[1];
  gcd := u[3];
end;
Grüße
Klaus
Klaus
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#7

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 7. Jul 2009, 22:32
Hallo Klaus,

Dein Code ist entweder falsch oder (wie hie leider üblich) nicht richtig beschrieben. Für p = 4523621, q = 5785379, d.h. phi=(p-1)*(q-1)=26170851628360 liefert Dein Code d=4 für d := extEuclidian(e,phi,gcd). Soll das ModInverse sein? Wohlt nicht da 4*17 = 68 <> 1 mod phi ist? Berechnet mit
Delphi-Quellcode:
procedure TForm1.Button2Click(Sender: TObject);
var
  p,q,e,phi,d,gcd: int64;
begin
  p := 4523621;
  q := 5785379;
  phi := (p-1)*(q-1);
  memo1.Lines.Append('phi='+IntToStr(phi));
  e := 17;
  d := extEuclidian(e,phi,gcd);
  memo1.Lines.Append('d='+IntToStr(d));
  memo1.Lines.Append('test='+IntToStr(d*e mod phi));
end;
Habe schnell zwei Codeschnipsel für xgcd und modinverse geschrieben, die funktionieren. xgcd und modinverse müssen in StringMatheLib eingefügt werden.

Delphi-Quellcode:
{-----------------------------------------------------------------------------
  Procedure: TMathe.xgcd
  Author:    W.Ehrhardt
  Date:      07-Jul-2009
  Arguments: u,v: ansistring; var u1,u2,u3: ansistring
  Result:    None
-----------------------------------------------------------------------------}

  procedure TMathe.xgcd(u,v: ansistring; var u1,u2,u3: ansistring);
    {-Extended gcd: calculate  u*u1 + v*u2 = u3 = gcd(u,v) via Knuth's Alg X}
  var
    v1,v3,t1,t3,q: ansistring;
    nu: boolean;
  begin
    { Ref: D.E. Knuth: The Art of computer programming, Volume 2, Seminumerical}
    { Algorithms, 3rd ed., 1998, page 342}

    {Note: the following setup returns 1*0 + 0*0 = 0, for a=b=0! This}
    {is somewhat strange but OK. Knuth's algorithm X gives the same. }
    {usage of u2,v2,t2 suppressed, y = u2 will be = (u3 - a*u1)/b}

    {initialize: (u1,u2,u3) = (1,0,a), (v1,v2,v3) = (0,1,b)}
    if _ImmerNormalisieren then begin
       _Normalisieren(u);
       _Normalisieren(v);
    end;
    nu := IstNegativ(u);
    u1 := '1'; u3 := Absolut(u);
    v1 := '0'; v3 := Absolut(v);

    {loop while v3 != 0}
    while v3<>'0do begin
      {q = u3/v3}
      q := Quotient(u3,v3);
      {(t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q}
      t1 := Differenz(u1, Produkt(v1,q));
      t3 := Differenz(u3, Produkt(v3,q));
      {(u1,u2,u3) = (v1,v2,v3)}
      u1 := v1;
      u3 := v3;
      {(v1,v2,v3) = (t1,t2,t3)}
      v1 := t1;
      v3 := t3;
    end;

    {make gcd positive}
    if istNegativ(u3) then begin
      Negieren(u1);
      Negieren(u3);
    end;
    if nu then Negieren(u1);

    {calculate u2, here v3=0}
    if v<>'0then begin
      {u2 = (u3 - u*u1)/v}
      t1 := Produkt(u,u1);
      t3 := Differenz(u3,t1);
      u2 := Quotient(t3,v)
    end
    else u2 := '0';
  end;

{-----------------------------------------------------------------------------
  Procedure: TMathe.modinverse
  Author:    W.Ehrhardt
  Date:      07-Jul-2009
  Arguments: a,b: ansistring; var c: ansistring
  Result:    boolean
-----------------------------------------------------------------------------}

  function TMathe.modinverse(a,b: ansistring; var c: ansistring): boolean;
    {-Calculate c := a^-1 mod b, return true if inverse exists, i.e. gcd(a,b)=1}
  var
    d,y: ansistring;
  begin
    xgcd(a,b,c,y,d);
    if IstNegativ(c) then c := Summe(c,b);
    result := d='1';
  end;
Der folgende Testcode liefert: d=20013004186393, und test = ProduktModulo(e,d,phi) = 1

Delphi-Quellcode:
procedure TForm1.Button3Click(Sender: TObject);
var
 p,q,e,phi,d,gcd,test: ansistring;
begin
  p := '4523621';
  q := '5785379';
  Mathe.Minus1(p);
  Mathe.Minus1(q);
  phi := Mathe.Produkt(p,q);
  e := '17';
  Mathe.modinverse(e,phi,d);
  memo1.Lines.Append('d='+d);
  test := mathe.ProduktModulo(e,d,phi);
  memo1.Lines.Append('test='+test);
end;
  Mit Zitat antworten Zitat
Benutzerbild von Mithrandir
Mithrandir
(CodeLib-Manager)

Registriert seit: 27. Nov 2008
Ort: Delmenhorst
2.379 Beiträge
 
#8

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 7. Jul 2009, 22:53
Zitat von gammatester:
[...](wie hier leider üblich) nicht richtig beschrieben.
Von Einem (oder meinetwegen einigen) auf das ganze Forum zu schließen, halte ich für gewagt und ungerecht. Oder bezieht sich das nur auf diesen Thread?
米斯蘭迪爾
"In einer Zeit universellen Betruges wird das Aussprechen der Wahrheit zu einem revolutionären Akt." -- 1984, George Orwell
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#9

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 7. Jul 2009, 23:38
Auf diesen (und den Vorläufer-Thread) mit den verschiedenen vergeblichen Versuchen ein funktionierende ModInverse zu schreiben.
  Mit Zitat antworten Zitat
Benutzerbild von Mithrandir
Mithrandir
(CodeLib-Manager)

Registriert seit: 27. Nov 2008
Ort: Delmenhorst
2.379 Beiträge
 
#10

Re: RSA: wie komme ich vom ggt zur vielfachsummendarstellun

  Alt 7. Jul 2009, 23:39
Achso, ok, das ging nicht so ganz daraus hervor.
米斯蘭迪爾
"In einer Zeit universellen Betruges wird das Aussprechen der Wahrheit zu einem revolutionären Akt." -- 1984, George Orwell
  Mit Zitat antworten Zitat
Antwort Antwort
Seite 1 von 2  1 2      


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 14:03 Uhr.
Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024 by Thomas Breitkreuz