» also ich weiß, es ist nicht sonderlich schnell, aber dafür seeeeeeeehr einfach aufgebaut
» es läuft mindestens ab Delphi 7 (drunter hab ich nicht getestet)
und auch für Delphi 2009 ist es geeignet
» man kann die Verwendung der Unit SysUtils abschalten (incl. der Unit Math, da diese die SysUtils verwendet, aber außer Max wird daraus eh nix verwendet)
» Zahlen mit theoretisch über 1 Milliarde Dezimalstellen sind möglich
» die Funktionen sind mit deutschsprachigen Namen versehn
» es steht unter MPL + (L)GPL
» Versionen: StringMatheLib.pas » Demo 1 » alle Funktionen in einer Klasse verpackt
StringMatheRec.pas » Demo 2 » in einem Record ("MatheString") verpackt und mit Operatoren versehen (ab D2006/TDE)
StringMatheVar.pas » Demo 4 » in einem Variant/"MatheVariant" verpackt und mit Operatoren versehen
StringMatheFloatRec.pas » Demo 3 » wie "MatheString" in einem Record ("MatheStringF") als Festkommazahl
StringMatheParser.pas » Demo 5 » ein kliner Mathe-Parser
// Normalisieren alle ungültigen und zusätzlichen Zeichen entfernen // Formatieren - // // Vergleich - // Vergleich - // istPositiv - // istNegativ - // istGerade - // istUngerade - // gibVorzeichen - // Dezimalstellen - // // Summe r = a + b // Differenz r = a - b // Plus1 a = a + 1 oder inc(a) // Minus1 a = a - 1 oder dec(a) // Negieren a = -a // Absolut if a < 0 then r = -a else r = a // // Produkt r = a * b // Quotient r = a div b // Modulo r = a mod b // QuotientModulo r = a div b und m = a mod b // // Quadrat r = a * a oder r = a ^ 2 // Quadratwurzel r = a ^ 1/2 // Quadratwurzel r = a ^ 1/2 und m = a - (a ^ 1/2) // Potenz r = a ^ b // Potenz10 r = 10 ^ b // // Quotient2 r = a div 2 // Produkt10 r = a * 10^b // Quotient10 r = a div 10^b // Modulo10 r = a mod 10^b // QuotientModulo10 r = a div 10^b und m = a mod 10^b // // SummeModulo r = (a + b) mod m // DifferenzModulo r = (a - b) mod m // ProduktModulo r = (a * b) mod m // PotenzModulo r = (a ^ b) mod m // // Zufall r = Random(von, bis)
Type MatheString = Type AnsiString;
TVergleich = (vUngleich, vKleiner, vKleinerGleich, vGleich, vGroesserGleich, vGroesser);
TMathe = Class Property ImmerNormalisieren: Boolean Read _ImmerNormalisieren Write _ImmerNormalisieren;
Function Normalisieren (a: String): String; Function Formatieren (a: String; TausenderPunkte, ImmerMitVorzeichen: Boolean; Mindestlaenge: Integer = 0): String;
Function Vergleich (a, b: String): TValueRelationship; Overload; Function Vergleich (a, b: String; Art: TVergleich): Boolean; Overload; Function istPositiv (a: String): Boolean; Function istNegativ (a: String): Boolean; Function istGerade (a: String): Boolean; Function istUngerade (a: String): Boolean; Function gibVorzeichen (a: String): Char; Function Dezimalstellen (a: String): Integer;
Function Produkt (a, b: String): String; Function Quotient (a, b: String): String; Function Modulo (a, b: String): String; Procedure QuotientModulo (a, b: String; Var Result, Rest: String);
Function Quadrat (a: String): String; Function Quadratwurzel (a: String): String; Procedure Quadratwurzel (a: String; Var Result, Rest: String); Function Potenz (a, b: String): String; Function Potenz10 ( b: String): String; Function Potenz10 ( b: Integer): String;
Function Quotient2 (a: String): String; Function Produkt10 (a, b: String): String; Function Produkt10 (a: String; b: Integer): String; Function Quotient10 (a, b: String): String; Function Quotient10 (a: String; b: Integer): String; Function Modulo10 (a, b: String): String; Function Modulo10 (a: String; b: Integer): String; Procedure QuotientModulo10(a, b: String; Var Result, Rest: String); Procedure QuotientModulo10(a: String; b: Integer; Var Result, Rest: String);
Function SummeModulo (a, b, m: String): String; Function DifferenzModulo (a, b, m: String): String; Function ProduktModulo (a, b, m: String): String; Function PotenzModulo (a, b, m: String): String;
Function zuInteger (a: String): LongInt; Function vonInteger (a: LongInt): String; Function zuCardinal (a: String): LongWord; Function vonCardinal (a: LongWord): String; Function zuInteger64 (a: String): Int64; Function vonInteger64 (a: Int64): String;
Function Produkt_langsam (a, b: String): String; Procedure QuotientModulo_langsam(a, b: String; Var Result, Rest: String); Function Potenz_langsam (a, b: String): String; End;
» wer die Parameter a und b vor Funktionsaufruf selber normalisiert (also z.B. mindestens einmal nach Eingabe der Werte), der kann .ImmerNormalisieren auf False setzen und es wird dann nicht ständig, beim Starten von Funktionen, durchgeführt ... es wird so also einen Hauch flotter.
Einen Tipp noch zum Schluß: versucht besser nicht eine "größere" Potenz zu berechnen!
(B also nicht zu groß wählen)
[s]Function TMathe.Potenz(a, b: MatheString): MatheString;
Begin
Result := Potenz_langsam(a, b);
End;[/s]
[edit2] wurde geändert
ChangeLog
[edit]
eine Auto-Refresh-CheckBox in den [berechnen]-Button gelegt
[16.06.2009 v1.0]
mit neuer Lizenz versehen (siehe oben)
[30.06.2009 11°° v1.1]
- einige Optimierungen
- Produkt10, Quotient10, Modulo10 und Co. hinzugefügt
- und der MatheParser kam auch dazu[
[30.06.2009 12°° v1.1]
- der Reinfolgefehler aus Beitrag #55 (Potenzen ala x^y^z) wurde behoben
[30.06.2009 12°° v1.1]
- der Reinfolgefehler aus Beitrag #55 (Potenzen ala x^y^z) wurde behoben
[30.06.2009 14°° v1.1]
- weitere Fehler behoben ... siehe #57+#58
- der Fehler bei den Klammern ist hoffentlich behoben #60
[30.06.2009 15:40 v1.1]
- Fehler im Parser #61
[30.06.2009 16:30 v1.2]
- der Mathe-Parser-Demo um einige Features erweitert (wie den Zwischenspeicher)
- Verwaltung der Konstanten, Funktionen und Operatoren erstellt (im Mathe-Parser)
[01.07.2009 00:30 v1.3]
- ein bissl aufgeräumt
- TMathe.Quadratwurzel, TMathe.PotenzModulo und abhängiges stark beschleunigt
- TMathe.Quotient2 eingeführt r := a div 2 (Grund für vorherigen Punkt)
- Demo6 erstellt = "Fließkomma"-Parser (alles mit # rechnet noch mit "falscher" Nachkommabehandlung)
[01.07.2009 10°° v1.3]
- Anfänge eines UnitTests eingefügt
- XPMan wieder entfernt (#67)
- Fehler behoben (#67 inkompatible Typen)
- TMathe.Produkt nach xZise #67 geändert
[01.07.2009 14²° v1.4]
- einige Dateien von UTF-8 nach Ansi konvertiert
- wegen #72 Version erhöht und alles neu kompiliert bzw. hochgeladen
- weitere Konstanten in die Parser eingefügt
[01.07.2009 14³° v1.4]
- Fehler bei internen Verwaltungsoperatoren behoben ... z.B. Komma wurde nicht erkannt
[01.07.2009 19°° v1.4]
- Verzögerungsfehler in Division entfernt, welcher die Rechenoptimierung abschaltete (#76)
- Vergleichsfunktion optimiert (#76)
- Potenz10, Produkt10 und Quotient10 in StringMatheParserFloat.pas berichtig und freigegeben (Nachkommastellenproblem #76)
[01.07.2009 20°° v1.5]
- Rechenfehler aus #67 behoben
[03.07.2009 12°° v1.5]
- Dezimalstellenfunktion mit Fehlerprüfung versehen und die Anzeiger der Stellen in den Demos etwas umgestellt (siehe #79..#81)
[03.07.2009 21³° v1.6]
- .Normalisieren und .Formatieren überarbeitet (#84)
- etwas aufgeräumt und die "InFile"-Hilfe erweitert
- doch wieder auf 7zip umgestiegen (ist 60% kleiner)
Neuste Erkenntnis:
Seit Pos einen dritten Parameter hat,
wird PoSex im Delphi viel seltener praktiziert.
Also gegen mein altes TBigInt sollte dieses um Längen langsamer arbeiten (auch wenn ich noch keinen Vergleich der beiden Typen angestellt hab) und vorallem bei den "höheren" Funktionen kommt selbst TBigInt nicht gegen sowas Hochoptimiertes wie das DEC an.
Hut ab! Klasse Unit, die ich auch sofort für ein altes Zahlenkonvertier-Problem in einem meiner Programme einsetzen kann.
Ich habe mich nur gefragt, warum du Mathestring auf AnsiString typecastes und in ein paar Funktionen explizit AnsiStrings und AnsiChars benutzt und nicht generell String und Char?
Ich habe das mal umgestellt und soweit ich das übersehen kann und getestet habe, läufts dann auch mit Unicode-Strings unter D2009.
Also die neue Operator-Unit hatte ich auf MatheRString ausgelegt und nur die externen Zuweisungen als AnsiString, WideString und Int64 vorgesehn ... beim anderen hatte ich in Bezug auf Delphi2009 es MatheString genannt.
Wenn ich da String und Char nehme, ist erstmal der Speicherverbrauch doppelt so hoch, was aber erstmal egal ist.
Aber schlimmer ist, daß man bei String/UnicodeString in D2009 kein IN [...] mehr verwenden kann.
Drum wurde alles "explizit" als AnsiString/MatheString definiert.
In der StringMatheLib.pas sollte aber, bist auf das Trim für D2009 (da es dort blöder Weise keine überladene Ansi-Verion gibt) alles als MatheString definiert.
Und das "MatheString" hatte ich so genommen, damit es besser auffällt und man nicht so ausversehn mal mit AnsiString/WideString/UnicodeString/String in Konflikt kommt und man nimmer weiß, was man nehmen soll,
außerdem paßt der Name so besser zur Record-Version
{$IFNDEF COMPILER12_UP} function CharInSet(C: AnsiChar; const CharSet: TSysCharSet): Boolean; begin
Result := C in CharSet; end; {$ENDIF !COMPILER12_UP}
Edit: Der Define COMPILER12_UP kommt aus der Jedi.inc, kann aber auch direkt ersetzt werden.
function CharInSet(C: Char; const CharSet: TSysCharSet): Boolean; begin
Result := (C <= #$00FF) and (AnsiChar(Word(C)) in CharSet); end;
Und für diese Funktion 32 Byte für ein TSysCharSet ständig hin- und herzukopieren?
(hätt das dann eher direkt in die ganzen Abfragen eingebaut, da so Delphi dann optimieren kann)
Das wollte ich dem Code nicht antun, drum bin ich beim ANSI geblieben.
Aber mal sehn, vielleich finde ich ja noch was "Schönes".