JasonDX, Das ist aus meiner schon etwas gehaltvoller und weniger aggressiv als das, was mir weiter oben entgegenschlug.
Mit Mathematik kann man zwar vieles recht gut (und vor allem präzis) beschreiben, dennoch ist sie keine Sprache, dazu fehlt ihr auch der Code bzw. die Codierung (ich meine damit nicht die mathematische Notation, die sehr wohl ein Code ist, sondern die Mathematik selbst).
Ich habe Schwierigkeiten, deinen Satz hier nachzuvollziehen. Was macht für dich eine Sprache aus? Du meinst später, eine Sprache kann nur gesprochen werden, aber ich spreche auch nicht mit dir, trotzdem kommunizieren wir zusammen über die deutsche Sprache. Kannst du mir die Eigenschaften etwas klarer nennen, die bspw. Esperanto zu einer Sprache machen, die Mathematik aber nicht?
Mathematik - nicht ihre Wissenschaft (schon das wird oft genug nicht streng unterschieden - beschäftigt sich mit einem (sehr komplexen) Untersuchungsgegenstand, der eben keine Sprache ist.
Die Biologie z.B. - sie ist ja auch eine Wissenschaft - beschäftigt sich mit dem Leben. Ist das Leben deshalb eine Sprache?
Unere Kommunikation über das Untersuchungsobjekt der Sprache bedient sich natürlich der Sprache. Da diese aber in Zeiten entstand, als Mathematik noch kein Thema war, ist sie dafür jedoch spürbar ungeeignet.
Deshalb gibt es die mathematische Notation (genauso wie die chemische und die musikalische).
Es ist schon drollig, wie eine meine Mathematiklehrerinnen, wenn man ihr etwas diktierte, nur gar zu gern es falsch auslegte und falsch an die Tafel schrieb. Es kostet erhebliche Mühe, es in der gesprochenen Sprache exakt auszudrücken.
Außerdem existieren mathematische Objekte sehr wohl, stellen demnach auch Realität dar. Mathematiker studieren etliche Jahre etwas sehr real existentes.
Kannst du mir diese realen Objekte beschreiben, welche du hier meinst?
Ich wiederhole mich: Etwas, was man schon an allgemeinbildenden Schulen kennenlernt, sind Zahlen und Mengen.
Und noch eine Wiederholung: Wenn diese nicht real - aber deswegen nicht zwangläufig nicht physisch - existieren würden, wie kämen sie dann zu dieser "Dreistigkeit", Eigenschaften zu besitzen, die wir mit unserem Geiste nicht bestimmen, sondern (leider?) nur entdecken können.
Viele scheinen nur das als real anzuerkennen (anerkennen zu wollen), was Materie, was materiell ist.
Daß es real ist, zeigt sich schon daran, daß es gesetzmäßig ist, und diese Gesetze sind - soweit wir das mit unserem Geiste erfassen können - völlig unabhängig von unserem Geiste, unserem Intellekt.
Gesetze implizieren nicht Realität. Diese Gesetze (nennen wir sie mal aus Spaß an der Freude Axiome) entspringen lediglich unserem Geiste, unserem Intellekt.
Nein, auch hier wurde etwas verwischt. Nicht diese Gesetze entspringen unserem Geiste, sondern unsere Erkenntnis über ihre Existenz.
Die Axiome zu Kardinalszahlen sind alles andere als natürlich, wir haben sie uns selbst ausgedacht.
Das ist richtig, aber es sind ja eben auch
Axiome und eben keine Gesetze. Mathematikern, das exakte Denken gewöhnt, entgeht dieser banale Unterschied nicht, dehalb auch verschiedene Begriffe.
Jedenfalls zweifelt z.B. niemand ernsthaft daran, daß die 2 eine Primzahl ist, und zwar unabhängig davon, daß wir diese Eigenschaft als solche erkennen.
Wie kann das unabhängig sein? Wie kann ich sagen "2 ist eine Primzahl", wenn ich die Eigenschaft "Primzahl" nicht erkenne?
So etwas nennt man eine Behauptung, die mit einem einfachen "Woher weißt Du das?" leicht zu fällen, bloßzustellen ist.
Wir haben klar definiert, was eine Primzahl ist - diese Definition ist ein Ergebnis unserer Gedanken - und wenden diese Definition auf 2 an, um zu erkennen, dass 2 eine Primzahl ist.
Eben - die 2 macht (mit uns), was sie will, und nicht umgekehrt. Kommt Dir das nicht seltsam vor?
Vielleicht sollte man sich mal mit dem Gedanken anfreunden, daß das, was wir Definition nennen, in Wirklichkeit eine Vordringen in ein Terrain ist, daß es "eigentlich" schon gibt? Ich weiß, hört sich mystisch an, aber unser Gehirn ist ja nun auch nicht "irgendetwas", sondern ein Organ mit ganz besonderen Fähigkeiten (so z.B. auch geistige Vorwegnahme der Zukunft - Planung und Ahnung). Vielleicht sollten wir uns mit dem Gedanken anfreunden, daß wir nicht etwas definiert (jedenfalls nicht ausschließlich), sondern mit seiner Hilfe nur entdeckt haben, und zwar etwas, was nicht materiell ist, aber dennoch (s)ein ganz reales Eigenleben führt.
Nicht umsonst gibt es auch im Bereich der Mathematik die Philosophie.
Ohne die Eigenschaft einer Mersenne-Primzahlen als solche zu erkennen, kannst du mir sagen, ob 7 eine solche ist? Ist 13 eine?
Was soll eine Eigenschaft, die nicht erkannt wird? Ohne ihre Erkenntnis kann man diese einem Objekt weder zu- (ihm eben - aus unserer Sicht! - zu eigen machen) noch absprechen. Aber weder die 7 noch die 13 scheren sich darum, ob wir ihre Eigenschaft erkennen, ja nicht mal an der Definition (wenn es denn eine ist) derselben.
Demnach werden auch Mathematiker fremder Welten diese Eigenschaft erkennen, sofern sie Mathematik betreiben und die Primzahleigenschaft als solche erkannt wurde.
Was, wenn Mathematiker fremder Welten überhaupt nicht das Konzept natürlicher Zahlen haben?Dann werden sie sich mit Primzahlen schwer tun. Ich halte es für unwahrscheinlich, dass andere Welten die genau gleichen Axiome produzieren wie wir.
Nun, wird die Primzahlverteilung in "deren natürlichen Zahlen" deshalb eine andere sein?!
Exobiologen - eine Wissenschaft mit einem rein spekulativen Untersuchungsobjekt - können nur vermuten, ob es ihren Untersuchungsgegenstand gibt, noch mehr, ob er intelligente Formen hervorgebracht hat. Aber daß diese, wenn sie Mathematik betreiben, zu anderen Ergebnissen als wir kommen, wird auch bei denen angezweifelt.