Einzelnen Beitrag anzeigen

Medium

Registriert seit: 23. Jan 2008
3.686 Beiträge
 
Delphi 2007 Enterprise
 
#4

AW: Canny edge algorithmus und Sobel Matrix

  Alt 27. Jul 2014, 05:21
Ich habe exakt genau diese Schritte als Basis meiner Bachelor Arbeit benutzt (Canny-Edge-Detector lässt grüßen.)

Die beiden Richtungen des Sobel-Operators werden dabei als Magnitude gerechnet, also die Länge der Vektoren, die sich aus den Grauwerten der beiden Ergbnisbilder an einer Koordinate ergeben: Sqrt(Sobel_X(x, y)² + Sobel_Y(x, y)²). Damit ist das Problem der negativen Werte gleich mit erschlagen.

Um einen Skalierungsfaktor habe ich mich in meiner Arbeit nicht geschert, da dies eh nur ein Zwischenschritt ist, und man die Non-Maxima-Unterdrückung locker ohne Normierung machen kann (bzw. sollte, weil schneller).
Wenn es denn aber sein muss, schaut man sich einfach mal den extremen Fall an:
Code:
 1  1 1|0             1 0 -1      1  2  1
 1  0  0  mit Kernlen 2 0 -2 und  0  0  0
1|0 0  0              1 0 -1     -1 -2 -1
Sobel_X und _Y sind hierbei = 3, deren Magnitude also rund 4,243. Das wäre der höchte Wert, auf den anzupassen wäre. Da dieser Fall aber ein starkes Extrem ist, zeigt ein so angepasstes als Graustufen angezeigtes Bild fast nur nahezu schwarze Stellen. Ich hatte daher um mir das Zwischenergebnis anzuzeigen eine nicht-lineare Skalierung genommen (Magnitude^K / 4,234 mit 0<K<1). Aber dies hat wie gesagt für die Non-Maxima-Unterdrückung keine Relevanz.

Wichtiger ist für diese, dass du neben der Magnitude der Sobel-Operatoren auch deren Richtungen beachtest, weil in diese Richtungen "gesucht" werden muss. Die Richtung ergibt sich aus Atan2(Sobel_Y(x, y), Sobel_X(x, y)), was einen Winkel ergibt. Den genauen Winkel braucht man allerdings nicht, es genügt in die bei Pixeln 8 möglichen Richtungen zu klassifizieren: 0, 45, 90, 135, 180, 225, 270 und 315 Grad.

Generell sind die Deutschen und Englischen Wikipedia-Artikel zum Canny-Edge-Detector sehr informativ, und diese sowie die darin angegeben Quellen (sowie eine Hand voll Google) haben nach etwas Arbeit ganz gut zum Ziel geführt: Listen von 4-Nachbarschafts-Koordinaten von zusammenhängenden Kanten, die ich darauf hin reduziert und zu Catmull-Rom-Splines verwertet habe. (Der Weg zu diesen war erheblich steiniger als der CED selbst, auwei das waren Zeiten )
"When one person suffers from a delusion, it is called insanity. When a million people suffer from a delusion, it is called religion." (Richard Dawkins)

Geändert von Medium (27. Jul 2014 um 05:25 Uhr)
  Mit Zitat antworten Zitat