Einzelnen Beitrag anzeigen

Furtbichler
(Gast)

n/a Beiträge
 
#34

AW: Gleichung umformen

  Alt 28. Jan 2014, 08:13
Seit ihr nicht etwas vom Thema abgekommen?

Ich hab gestern wieder etwas darüber gesehen (Summe 1-1+1-1...):

Es gibt mehrere Möglichkeiten, das auszurechnen. Die erste ist die, eine Formel zu finden, die die Summe S(n) für die Werte von 1..n ausrechnet. Im Idealfall hätte man eine Konstante C und einen von n abhängigen Anteil. Also
Summe(1..n)= C+f(n). Wenn man beweisen kann, das f(n) gegen 0 geht, hat man gewonnen. Z.B. bei der Reihe 1/2 + 1/4 +1/8... ist C=1 und f(n)=1/(2^n). Wenn n => unendlich geht, geht f(n)= 1/(2^n) gegen 0. Der Grenzwert ist also C=1. Das klappt bei unserer Reihe natürlich nicht.

Aber es gibt auch eine andere Möglichkeit: Man kann sich den Durschnitt aller Teilsummen [S(1)..S(n)] nehmen. Das ergibt eine neue Reihe, die so aussieht:
S1/1, (S1+S2)/2, (S1+S2+S3)/3..., (S1+S2+S3...+Sn)/n
Und wenn diese Reihe konvergiert, dann ist der Grenzwert eben genau die ursprüngliche Reihensumme. Für unsere Summe ergibt das ...
S1=1 (1)
S2=0 (1-1)
S3=1 (1-1+1)
...
Nun bilden wir den Durschnitt der ersten n Summen:
....
Für n=1 hätten wir [1]/1 = 1
Für n=2 hätten wir [1+0]/2 = 1/2 (also (S1+S0)/2)
Für n=3 hätten wir [1+0+1]/3 = 2/3
Für n=4 hätten wir [1+0+1+0]/4 = 2/4
Für n=10 hätten wir [1+0+1+0+1+0+1+0+1+0]/10= 5/10
Für n=11 hätten wir [1+0+1+0+1+0+1+0+1+0+1]/11= 5/11
...
Für n=1000 hätten wir [1+0....+1]/1000 = 500/1000
Für n=1001 hätten wir [1+0....+1+0]/1001=500/1001
Hmm. Offenbar pendeln sich die Teilsummen bei 1/2 ein (mal etwas mehr, mal genau). Der Durschnitt der ersten 1001 Teilsummen ist schon fast 1/2.. !?

Allgemein gesehen bekommen wir für wachsende n abwechselnd 1/2 bzw 1/2 + 1/2n. Nun geht aber 1/2n für wachsende n gegen 0. Also werden wir für n=> unendlich bei 1/2 landen. Zwangsweise.
q.e.d
Je größer n wird, desto näher liegen zwei Teilsummen beieinander und insgesammt bei 1/2. Wie kann es dann sein, das die Teilsumme bei n=unendlich plötzlich einen großen Sprung macht? Es ist doch eher so, das man annehmen kann, das sich die Summe für n=>unendlich bei 1/2 einpendelt. Was spricht dagegen?

Geändert von Furtbichler (28. Jan 2014 um 08:18 Uhr)
  Mit Zitat antworten Zitat