Deswegen wurden auch weitere Beweisansätze gezeigt. Da die aber etwas weiter ausholen und mit Schulmathe schwerer nachvollziehbar sind, wurde der Fokus denke ich sehr auf das Untereinanderschreiben der Summen gelegt.
Das Problem ist weniger der Beweis an sich, sondern die Definition. Wenn a eine konvergente Folge ist, dann sagt man normalerweise per Konvention, dass a = der Wert, gegen den sie konvergiert.
Folgen, die nicht konvergieren, sind ja aber auch nicht ungewöhnlich, z.B. sin(x) konvergiert nicht. In solchen Fällen kann man aber z.B. trotzdem lim sup und lim inf bestimmen (für die +1-1-Folge auch). Wäre ja alles witzlos, wenn der Grenzwert das gleiche wäre wie der Durchschnitt.
In dem Video betonen sie öfter, dass das in der Physik verwendet wird. Das kann ich mir auch durchaus vorstellen, da man es in der Praxis sicher häufiger mit Zeitspannen zu tun hat. Wenn ich z.B. ein Foto aufnehme und während der Belichtungszeit das Licht immer ganz schnell an- und ausstelle, dann kriege ich ein halb belichtetes Bild. Dithering wäre also ein Anwendungsfall. Aber Physik ist eben nicht das gleiche wie Mathematik.