Hallo
DP ich bin es mal wieder.
Ich bin vor ein Paar Tagen von meiner Informatiklehrerin auf das Apfelmännchen aufmerksam gemacht worden. Als ich es das erste mal gesehen habe, dachte ich einfach nur 'wow!
so geil kann Mathe aussehen ?' Habe den relativ simplen Algorithmus auch umgesetzt und dargestellt.
Nun wollte ich das ganze noch etwas schneller rechnen lassen. Zunächst habe ich über Multithreading nachgedacht, aber dann wurde mir bewusst, dass ich damit nicht mein eigentliches Problem löse sondern nur auf die Prozesorkerne auslagere
Nun wollte ich hier mal nachfragen ob evtl. jemand Tipps hat was ich an meiner Berechnung schneller machen (bzw. optimieren) kann.
Delphi-Quellcode:
function Mandelbrot.rechne(X_Ko, Y_Ko, X, Y, A: double; i: Integer): Integer;
var
nX, nY, nA: double;
begin
if (i < 50) and (A < 2)
then begin
nX := (X*X) - (Y*Y) + X_Ko;
nY := 2*X*Y + Y_Ko;
nA := SQRT(nX*nX + nY*nY);
result := rechne(X_Ko, Y_Ko, nX, nY, nA, i+1);
end;
end;
Erklärung:
der Rückgabewert wird später zur Darstellung der Farben benutzt.
i ist die Anzahl der Iterationen. Je höher desto genauer das Bild.
(X_Ko | Y_Ko) sollen mit dem Punkt (X | Y) verglichen werden. (normalerweise ist dies der Ursprung (0 | 0)
A bzw. nA sind der Abstand zu (X | Y) - Satz des Pythagoras, wenn ich das nicht falsch verstanden habe
Aufruf:
Aufrufen tue ich die Funktion mit einer case .. of Anweisung.
Delphi-Quellcode:
case rechne(x, y, 0, 0, 0, 0) of
0..10: Bild.Canvas.Pixels[x,y] := clBlack;
11..20: Bild.Canvas.Pixels[x,y] := clOlive;
21..30: Bild.Canvas.Pixels[x,y] := clYellow;
31..40: Bild.Canvas.Pixels[x,y] := clLime;
41..50: Bild.Canvas.Pixels[x,y] := clGreen;
else Bild.Canvas.Pixels[x,y] := $000000;
Und bei einem hohen 'i' hat mein Rechner dann ein bisschen viel zu rechnen..
Danke im Voraus schonmal.
Was ist ein Apfelmännchen ?