Registriert seit: 19. Mai 2006
570 Beiträge
Delphi XE3 Professional
|
AW: [Mathe] Punktsymmetrie
27. Feb 2012, 01:49
Aber genau dann, wenn Du Deine Theorie auf die notwendige Bedingung für Wendestellen reduzierst, komme ich mit den linearen Funktion und widerlege sie.
Wenn Du aber die hinreichende Bedingung nimmst, sollte es auf den ersten Blick funktionieren: Symmetriestelle -> Wendestelle.
Berechnest Du jetzt alle Wendestellen einer Funktion und testest sie auf Symmetrie, gehen Dir trotzdem Symmetriestellen(-punkte) verloren - zum Beispiel bei f(x)=tan(x+Pi/2). Diese Funktion ist punktsymmetrisch (es gilt wieder f(x)=-f(-x)) - sie ist aber für x=0 gar nicht definiert. Also liegt der Symmetriepunkt nicht auf der Funktion und kann somit auch kein Wendepunkt sein.
|