Einzelnen Beitrag anzeigen

Namenloser

Registriert seit: 7. Jun 2006
Ort: Karlsruhe
3.724 Beiträge
 
FreePascal / Lazarus
 
#7

AW: [Mathe] Punktsymmetrie

  Alt 26. Feb 2012, 23:26
Danke für das Durchexerzieren der Rechnung, aber, so leid es mir tut, ist diese leider nicht die Antwort auf meine Frage.

Deine Rechnung weist nach, dass der Graph punktsymmetrisch zum Ursprung (0|0) ist, aber in der Aufgabenstellung steht nirgends was vom Ursprung. Es gibt auch Punktsymmetrien zu anderen Punkten als dem Ursprung. Nimm z.B. g(x) = (x-2)³. Diese Funktion wäre punktsymmetrisch zum Punkt (2|0). Und die Funktion aus der Eingangsfrage hat sogar unendlich Symmetriepunkte.

Zitat:
P.S.: Die Funktion kann an allen Nullstellen gedreht werden. Das wäre bei k*Pi.
Ich weiß, habe ich auch eingangs schon geschrieben. Die Frage ist, wie man formal darauf kommt. Natürlich kann man leicht nachweisen, dass die Funktion an allen Nullstellen punktsymmetrisch ist, aber damit ist ja nicht formal bewiesen, dass es nicht noch weitere Symmetriepunkte gibt.

Geändert von Namenloser (26. Feb 2012 um 23:35 Uhr)
  Mit Zitat antworten Zitat