Einzelnen Beitrag anzeigen

Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#36

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 15:57
Was auch ganz interessant ist, daß P und Q nicht unbedingt Primzahlen sein müssen. Dann muß man aber vorher auf Plausibilität prüfen, d.h. für alle zu verschlüsselnden I muß die Bedingung I = Decrypt(Encrypt(I)) erfüllt sein.
Diese Annahme ist korrekt und falsch zugleich. Mathem. kann man RSA auch mit zusammengesetzten Zahlen machen das wäre dann ein RSA dessen N aus mehr als 2 Primzahlen besteht. Das ist aber kryptographisch nur dann vergleichbar sicher zu einem RSA Modul aus 2 Primzahlen wenn alle Primzahlen so groß sind wie die 2 Primzahlen. Dh. ein 1024 Bit RSA Schlüssel besteht aus zwei Primnzahlen a 512 Bit. Nehmen wir mal an wir lösen diese Forderung bischen auf und nehmen eine 1020 Bit Primzahl und eine 4 Bit Primzahl. Jeder kann sich ausrechnen wie lange nun die Suche bei der Faktorisierung dieses N nach dieser 4 Bit Primzahl dauert. Kryptographsich ist das also ziemlicher Blödsinn es so zu machen. Falls aber N zb. 2048 Bit groß wäre und das Produkt aus 4 Primzahlen a 512 Bit ist dann wäre dieser RSA fast so sicher wie ein 2048 Bit Schlüssel der aus 2x 512Bit Primzahlen bestünde.

Gammatester hat s schon korrekt angesprochen: asymmertische Kryptoverfahren sind sehr anfällig für Designfehler. Weit mehr anfällig als symmetrische Verfahren wie AES, SHA1 usw. Denn selbst bei der Wahl der zB. beiden 512 Bit Primzahlen eines 1024 RSA Schlüssels muß man höllisch aufpassen. Die Primzahlen dürfen von keiner speziellen Form sein, bzw. wenn diese Formk von spezieller Natur ist dann muß es eine sein die nachweislich sicher ist, zB. sogenannte Safe primes = Sophie Germain Primzahlen wären solche Kandidaten. Deren Nutzen im Vergleich zu guten industriellen Primzahlen beim RSA aber sehr gering ist. Dem gegenüber steht der Aufwand solche Primzahlen zu erzeugen.

Aber gerade diese Schlüsselerzeugung ist es die man so manipulieren kann das man einen verdeckten Kanal in das public Modul N einbauen kann. Dabei gilt das dieser verdeckte Kanal selber geschützt wird durch das Faktorisierungsproblem. Dh. der "Angreifer" der einem solchen Schlüssel unterjubeln kann hat die Chance sehr effeizient aus einem solchen public Modul N die Faktorisation zu berechnen. Ich selber habe dazu den praktischen Beweis angetreten. Fazit: traue niemals einem privatem RSA Schlüssel den du selber nicht berechnet hast und bei dem die Art&Weise der Erzeugung der benutzten Primzahlen nicht bekannt und nicht verifizierbar ist. Das betrifft jede Technologie wie SmartCards oder komplexe Cryptobibliotheken ohne Sourcen wie das MS CryptoAPI oder die erzeugten Schlüssel eines TrustCenters für dessen Kunden.

Gruß hagen

Geändert von negaH (11. Nov 2011 um 16:07 Uhr)
  Mit Zitat antworten Zitat