Einzelnen Beitrag anzeigen

Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#22

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 02:55
Leider geht aus diesem Thread nicht hervor, wie man den private key mit Hilfe des public keys findet.

Geht das überhaupt?
Ja kann man. Die Sicherheit von RSA, bzw. jeder Kryptographie kannst du dir so vorstellen:

Ich baue einen riesigen Sandhaufen und setze mich drauf. Vorher berechne ich das ich 100 Jahre leben möchte und das mich keiner in dieser Zeit vom Haufen stoßen kann. Ergo berechne ich wie lange ein Angreifer benötigen würde um meinen Sandhaufen zu erklimmen. Dann schütte ich den Sandhaufen so hoch das man 200 Jahre benötigen würde um ihn zu erklettern.

Von vornherein ist klar das man den Sandhaufen erklimmen kann, es gibt also ein schon bekanntes Verfahren. Aber ich stelle nur sicher das man mit allen bekannten Verfahren während meiner 100 Lebensjahre nicht auf meinen Sandhaufen hinauf kommt.

Das einzige was einen Strich durch meine Rechnung machen könnte ist neues Wissen. Zb. die Erfindung des Helikopters der nun in Minuten Leute auf meinen Sandhaufen rauffliegen kann. Und exakt darum geht es wenn die Kryptographen fordern das alles an einem Kryptosystem öffentlich sein muß (also die Formeln etc.pp nicht die Passwörter . Denn unser zukünftiges Wissen ist es das unsere heutige Kryptographie brechen wird.

Als potentielle Faktorisierungsalgos. gelten das Quadratische Sieb QS, Elliptische Kurven Methode ECM, Field Number Sieve GNFS -> SNFS usw.

Allerdings gilt: heute sichere RSA Schlüssel können mit keinem der bekannten Verfahren in erträglicher Zeit mit erträglichen Aufwand geknackt werden.

Wenn dann sehe ich eher die Chance das die neusten Entwicklungen bei den Quantencomputern das ändern könnten. Aber nur dann wenn die Verfügbarkeit dieser Technologie eingeschränkt ist. Dh. der Angreifer hat diese Technologie und das Opfer muß weiterhin mit unserer heutigen Rechentechnik arbeiten. Sollten beide Seiten die gleiche Rechenpower haben dann egalisiert sich das wieder da nun der Komplexitätsfaktor der Trapdoorfunktion wieder wirkt. Also mit Quantencomputern auf beiden Seiten wird RSA wieder "unknackbar" der einzige Unterschied zu heuten RSA dürften die viel größeren Zahlengrößen, mit denen man dann rechnet, sein.

Gruß Hagen
  Mit Zitat antworten Zitat